學習啦 > 知識大全 > 知識百科 > 自然科學知識 > PN結是怎么形成的

PN結是怎么形成的

時間: 煒杭741 分享

PN結是怎么形成的

  采用不同的摻雜工藝,通過擴散作用,將P型半導體與N型半導體制作在同一塊半導體(通常是硅或鍺)基片上,在它們的交界面就形成空間電荷區(qū)稱為PN結(英語:PN junction)。PN結具有單向?qū)щ娦?,是電子技術中許多器件所利用的特性,例如半導體二極管、雙極性晶體管的物質(zhì)基礎。你對PV結有什么認識呢?下面由學習啦小編為你詳細介紹。

  PB結石怎么形成的:

  雜質(zhì)半導體

  N型半導體(N為Negative的字頭,由于電子帶負電荷而得此名):摻入少量雜質(zhì)磷元素(或銻元素)的硅晶體(或鍺晶體)中,由于半導體原子(如硅原子)被雜質(zhì)原子取代,磷原子外層的五個外層電子的其中四個與周圍的半導體原子形成共價鍵,多出的一個電子幾乎不受束縛,較為容易地成為自由電子。于是,N型半導體就成為了含電子濃度較高的半導體,其導電性主要是因為自由電子導電。

  P型半導體(P為Positive的字頭,由于空穴帶正電而得此名):摻入少量雜質(zhì)硼元素(或銦元素)的硅晶體(或鍺晶體)中,由于半導體原子(如硅原子)被雜質(zhì)原子取代,硼原子外層的三個外層電子與周圍的半導體原子形成共價鍵的時候,會產(chǎn)生一個“空穴”,這個空穴可能吸引束縛電子來“填充”,使得硼原子成為帶負電的離子。這樣,這類半導體由于含有較高濃度的“空穴”(“相當于”正電荷),成為能夠?qū)щ姷奈镔|(zhì)。

  PN結的形成

  PN結是由一個N型摻雜區(qū)和一個P型摻雜區(qū)緊密接觸所構成的,其接觸界面稱為冶金結界面。

  在一塊完整的硅片上,用不同的摻雜工藝使其一邊形成N型半導體,另一邊形成P型半導體,我們稱兩種半導體的交界面附近的區(qū)域為PN結。

  在P型半導體和N型半導體結合后,由于N型區(qū)內(nèi)自由電子為多子空穴幾乎為零稱為少子,而P型區(qū)內(nèi)空穴為多子自由電子為少子,在它們的交界處就出現(xiàn)了電子和空穴的濃度差。由于自由電子和空穴濃度差的原因,有一些電子從N型區(qū)向P型區(qū)擴散,也有一些空穴要從P型區(qū)向N型區(qū)擴散。它們擴散的結果就使P區(qū)一邊失去空穴,留下了帶負電的雜質(zhì)離子,N區(qū)一邊失去電子,留下了帶正電的雜質(zhì)離子。開路中半導體中的離子不能任意移動,因此不參與導電。這些不能移動的帶電粒子在P和N區(qū)交界面附近,形成了一個空間電荷區(qū),空間電荷區(qū)的薄厚和摻雜物濃度有關。

  在空間電荷區(qū)形成后,由于正負電荷之間的相互作用,在空間電荷區(qū)形成了內(nèi)電場,其方向是從帶正電的N區(qū)指向帶負電的P區(qū)。顯然,這個電場的方向與載流子擴散運動的方向相反,阻止擴散。

  另一方面,這個電場將使N區(qū)的少數(shù)載流子空穴向P區(qū)漂移,使P區(qū)的少數(shù)載流子電子向N區(qū)漂移,漂移運動的方向正好與擴散運動的方向相反。從N區(qū)漂移到P區(qū)的空穴補充了原來交界面上P區(qū)所失去的空穴,從P區(qū)漂移到N區(qū)的電子補充了原來交界面上N區(qū)所失去的電子,這就使空間電荷減少,內(nèi)電場減弱。因此,漂移運動的結果是使空間電荷區(qū)變窄,擴散運動加強。

  最后,多子的擴散和少子的漂移達到動態(tài)平衡。在P型半導體和N型半導體的結合面兩側,留下離子薄層,這個離子薄層形成的空間電荷區(qū)稱為PN結。PN結的內(nèi)電場方向由N區(qū)指向P區(qū)。在空間電荷區(qū),由于缺少多子,所以也稱耗盡層。

  PN結的特性:

  從PN結的形成原理可以看出,要想讓PN結導通形成電流,必須消除其空間電荷區(qū)的內(nèi)部電場的阻力。很顯然,給它加一個反方向的更大的電場,即P區(qū)接外加電源的正極,N區(qū)結負極,就可以抵消其內(nèi)部自建電場,使載流子可以繼續(xù)運動,從而形成線性的正向電流。而外加反向電壓則相當于內(nèi)建電場的阻力更大,PN結不能導通,僅有極微弱的反向電流(由少數(shù)載流子的漂移運動形成,因少子數(shù)量有限,電流飽和)。當反向電壓增大至某一數(shù)值時,因少子的數(shù)量和能量都增大,會碰撞破壞內(nèi)部的共價鍵,使原來被束縛的電子和空穴被釋放出來,不斷增大電流,最終PN結將被擊穿(變?yōu)閷w)損壞,反向電流急劇增大。

  這就是PN結的特性(單向?qū)?、反向飽和漏電或擊穿導體),也是晶體管和集成電路最基礎、最重要的物理原理,所有以晶體管為基礎的復雜電路的分析都離不開它。比如二極管就是基于PN結的單向?qū)ㄔ砉ぷ鞯?而一個PNP結構則可以形成一個三極管,里面包含了兩個PN結。二極管和三極管都是電子電路里面最基本的元件。

  反向擊穿性

  PN結加反向電壓時,空間電荷區(qū)變寬,區(qū)中電場增強。反向電壓增大到一定程度時,反向電流將突然增大。如果外電路不能限制電流,則電流會大到將PN結燒毀。反向電流突然增大時的電壓稱擊穿電壓?;镜膿舸C構有兩種,即隧道擊穿(也叫齊納擊穿)和雪崩擊穿,前者擊穿電壓小于6V,有負的溫度系數(shù),后者擊穿電壓大于6V,有正的溫度系數(shù)。

  雪崩擊穿:阻擋層中的載流子漂移速度隨內(nèi)部電場的增強而相應加快到一定程度時,其動能足以把束縛在共價鍵中的價電子碰撞出來,產(chǎn)生自由電子—空穴對,新產(chǎn)生的載流子在強電場作用下,再去碰撞其它中性原子,又產(chǎn)生新的自由電子—空穴對,如此連鎖反應,使阻擋層中的載流子數(shù)量急劇增加,象雪崩一樣。雪崩擊穿發(fā)生在摻雜濃度較低的PN結中,阻擋層寬,碰撞電離的機會較多,雪崩擊穿的擊穿電壓高。

  齊納擊穿:齊納擊穿通常發(fā)生在摻雜濃度很高的PN結內(nèi)。由于摻雜濃度很高,PN結很窄,這樣即使施加較小的反向電壓(5V以下),結層中的電場卻很強(可達2.5×105V/m左右)。在強電場作用下,會強行促使PN結內(nèi)原子的價電子從共價鍵中拉出來,形成"電子一空穴對",從而產(chǎn)生大量的載流子。它們在反向電壓的作用下,形成很大的反向電流,出現(xiàn)了擊穿。顯然,齊納擊穿的物理本質(zhì)是場致電離。

  采取適當?shù)膿诫s工藝,將硅PN結的雪崩擊穿電壓可控制在8~1000V。而齊納擊穿電壓低于5V。在5~8V之間兩種擊穿可能同時發(fā)生。

  熱電擊穿:當pn結施加反向電壓時,流過pn結的反向電流要引起熱損耗。反向電壓逐漸增大時,對于一定的反向電流所損耗的功率也增大,這將產(chǎn)生大量熱量。如果沒有良好的散熱條件使這些熱能及時傳遞出去,則將引起結溫上升。這種由于熱不穩(wěn)定性引起的擊穿,稱為熱電擊穿。

  擊穿電壓的溫度特性:溫度升高后,晶格振動加劇,致使載流子運動的平 均自由路程縮短,碰撞前動能減小,必須加大反向電壓才能發(fā)生雪崩擊穿具有正的溫度系數(shù),但溫度升高,共價鍵中的價電子能量狀態(tài)高,從而齊納擊穿電壓隨溫度升高而降低,具有負的溫度系數(shù)。

  單向?qū)щ娦?/p>

  (1)PN結加正向電壓時導通

  如果電源的正極接P區(qū),負極接N區(qū),外加的正向電壓有一部分降落在PN結區(qū),PN結處于正向偏置。電流便從P型一邊流向N型一邊,空穴和電子都向界面運動,使空間電荷區(qū)變窄,電流可以順利通過,方向與PN結內(nèi)電場方向相反,削弱了內(nèi)電場。于是,內(nèi)電場對多子擴散運動的阻礙減弱,擴散電流加大。擴散電流遠大于漂移電流,可忽略漂移電流的影響,PN結呈現(xiàn)低阻性。

  (2)PN結加反向電壓時截止

  如果電源的正極接N區(qū),負極接P區(qū),外加的反向電壓有一部分降落在PN結區(qū),PN結處于反向偏置。則空穴和電子都向遠離界面的方向運動,使空間電荷區(qū)變寬,電流不能流過,方向與PN結內(nèi)電場方向相同,加強了內(nèi)電場。內(nèi)電場對多子擴散運動的阻礙增強,擴散電流大大減小。此時PN結區(qū)的少子在內(nèi)電場作用下形成的漂移電流大于擴散電流,可忽略擴散電流,PN結呈現(xiàn)高阻性。

  在一定的溫度條件下,由本征激發(fā)決定的少子濃度是一定的,故少子形成的漂移電流是恒定的,基本上與所加反向電壓的大小無關,這個電流也稱為反向飽和電流。

  PN結加正向電壓時,呈現(xiàn)低電阻,具有較大的正向擴散電流;PN結加反向電壓時,呈現(xiàn)高電阻,具有很小的反向漂移電流。由此可以得出結論:PN結具有單向?qū)щ娦浴?/p>

  伏安特性

  PN結的伏安特性(外特性)如圖所示,它直觀形象地表示了PN結的單向?qū)щ娦浴?/p> 伏安特性的表達式為:

式中iD為通過PN結的電流,vD為PN結兩端的外加電壓,VT為溫度的電壓當量,
PN結是怎么形成的
,其中k為波耳茲曼常數(shù)(1.38×10-23J/K),T為熱力學溫度,即絕對溫度(300K),q為電子電荷(1.6×10-19C)。在常溫下,VT ≈26mV。Is為反向飽和電流,對于分立器件,其典型值為10-8~10-14A的范圍內(nèi)。集成電路中二極管PN結,其Is值則更小。

  當vD>>0,且vD>VT時, ;

  當vD<0,且 時,iD≈–IS≈0。

  電容特性

  PN結加反向電壓時,空間電荷區(qū)中的正負電荷構成一個電容性的器件。它的電容量隨外加電壓改變,主要有勢壘電容(CB)和擴散電容(CD)。勢壘電容和擴散電容均是非線性電容。

勢壘電容:勢壘電容是由空間電荷區(qū)的離子薄層形成的。當外加電壓使PN結上壓降發(fā)生變化時,離子薄層的厚度也相應地隨之改變,這相當PN結中存儲的電荷量也隨之變化。勢壘區(qū)類似平板電容器,其交界兩側存儲著數(shù)值相等極性相反的離子電荷,電荷量隨外加電壓而變化,稱為勢壘電容,用CB表示,其值為:
PN結是怎么形成的
。在PN結反偏時結電阻很大,CB的作用不能忽視,特別是在高頻時,它對電路有較大的影響。[9] CB不是恒值,而是隨V而變化,利用該特性可制作變?nèi)荻O管。 PN結有突變結和緩變結,現(xiàn)考慮突變結情況,PN結相當于平板電容器,雖然外加電場會使勢壘區(qū)變寬或變窄 但這個變化比較小可以忽略,則
PN結是怎么形成的
,已知動態(tài)平衡下阻擋層的寬度L0,代入上式可得:
PN結是怎么形成的

  擴散電容:PN結正向?qū)щ姇r,多子擴散到對方區(qū)域后,在PN結邊界上積累,并有一定的濃度分布。積累的電荷量隨外加電壓的變化而變化,當PN結正向電壓加大時,正向電流隨著加大,這就要求有更多的載流子積累起來以滿足電流加大的要求;而當正向電壓減小時,正向電流減小,積累在P區(qū)的電子或N區(qū)的空穴就要相對減小,這樣,當外加電壓變化時,有載流子向PN結“充入”和“放出”。PN結的擴散電容CD描述了積累在P區(qū)的電子或N區(qū)的空穴隨外加電壓的變化的電容效應。[10]

  因PN結正偏時,由N區(qū)擴散到P區(qū)的電子,與外電源提供的空穴相復合,形成正向電流。剛擴散過來的電子就堆積在 P 區(qū)內(nèi)緊靠PN結的附近,形成一定的多子濃度梯度分布曲線。反之,由P區(qū)擴散到N區(qū)的空穴,在N區(qū)內(nèi)也形成類似的濃度梯度分布曲線。

  CD是非線性電容,PN結正偏時,CD較大,反偏時載流子數(shù)目很少,因此反偏時擴散電容數(shù)值很小。一般可以忽略。

  PN結電容:PN結的總電容Cj為CT和CD兩者之和Cj = CT+CD ,外加正向電 壓CD很大, Cj以擴散電容為主(幾十pF到幾千pF) ,外加反向電壓CD趨于零,Cj以勢壘電容為主(幾pF到幾十pF到)。

  PN結的應用:

  根據(jù)PN結的材料、摻雜分布、幾何結構和偏置條件的不同,利用其基本特性可以制造多種功能的晶體二極管。如利用PN結單向?qū)щ娦钥梢灾谱髡鞫O管、檢波二極管和開關二極管,利用擊穿特性制作穩(wěn)壓二極管和雪崩二極管;利用高摻雜PN結隧道效應制作隧道二極管;利用結電容隨外電壓變化效應制作變?nèi)荻O管。使半導體的光電效應與PN結相結合還可以制作多種光電器件。如利用前向偏置異質(zhì)結的載流子注入與復合可以制造半導體激光二極管與半導體發(fā)光二極管;利用光輻射對PN結反向電流的調(diào)制作用可以制成光電探測器;利用光生伏特效應可制成太陽電池。此外,利用兩個PN結之間的相互作用可以產(chǎn)生放大,振蕩等多種電子功能。PN結是構成雙極型晶體管和場效應晶體管的核心,是現(xiàn)代電子技術的基礎。在二級管中廣泛應用。

  穩(wěn)壓二極管

  PN結一旦擊穿后,盡管反向電流急劇變化,但其端電壓幾 乎不變(近似為VBR,只要限制它的反向電流,PN結 就不會燒壞,利用這一特性可制成穩(wěn)壓二極管,其電路符號及伏安特性如上圖所示:其主要參數(shù)有: VZ 、 Izmin 、 Iz 、 Izmax。

557292