2017年臨沂數(shù)學中考模擬真題及答案
考生多對數(shù)學中考模擬試題進行練習有助于提高成績,為了幫助各位考生提升,以下是小編精心整理的2017年臨沂數(shù)學中考模擬試題及答案,希望能幫到大家!
2017年臨沂數(shù)學中考模擬試題
一、填空題(本大題共6個小題,每小題3分,滿分18分)
1.-4的相反數(shù)是 .
2.函數(shù) 中自變量x 的取值范圍是 .
3.,直線l1∥l2,CD⊥AB于點D,∠1=44°,則∠2的度數(shù)為 .
4.已知一個等腰三角形的兩邊長分別為3和6,則該等腰三角形的周長是 .
5.若x1,x2是一元二次方程x2﹣2x+1=0的兩個根,則x 1﹣x 1 x 2+ x 2的值為 .
6.,在平面直角坐標系中,直線l:y =x+2交x軸于點A,交y軸于點A1,點A2,A3,…在直線l上,點B1,B2,B3,…在x軸的正半軸上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均為等腰直角三角形,直角頂點都在x軸上,則第n個等腰直角三角形AnBn﹣1Bn頂點Bn的橫坐標為 .
二、選擇題(本大題共8個小題,每小題只有一個正確選項,每小題4分,滿分32分)
7.下列運算正確的是( )
A. B. C. D.
8.已知一個正多邊形的內(nèi)角是140°,則這個正多邊形的邊數(shù)是( )
A.6 B.7 C.8 D.9
9.是由4個大小相同的正方體組合而成的幾何體,其左視圖是( )
A. B. C. D.
10.云南高鐵自開通以來,發(fā)展速度不斷加快,現(xiàn)已成為云南市民主要出行方式之一.今年五一期間安全運輸乘客約5460000人次.用科學記數(shù)法表示5460000為( )
A.5.46×107 B.5.46×106 C.5.5×106 D.546×104
11.,點A,B,C在⊙O上,若∠BAC=45°,OB=2,則圖中陰影部分的面積為( )
A.π-4 B. π-1 C.π-2 D. π-2
12.某中學籃球隊12名隊員的年齡如下表所示:
年齡(歲) 13 14 15 16
人數(shù) 2 5 4 1
則這12名隊員的年齡的眾數(shù)和中位數(shù)分別是( )
A.14,14 B.14,14.5 C.14,15 D.15,14
13.若點A(﹣4,3)、B(m,2)在同一個反比例函數(shù)的圖象上,則m的值為( )
A.6 B.﹣6 C.12 D.﹣12
14.,一直線與兩坐標軸的正半軸分別交于A,B兩點,P是線段
AB上任意一點(不包括端點),過P分別作兩坐標軸的垂線與兩坐標軸
圍成的矩形的周長為10,則該直線的函數(shù)表達式是( )
A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+10
三、解答題(本大題共9個小題,滿分70分)
15.(7分)計算:先化簡,再求值: ,其中x=1.
16.(7分),∠ADB=∠AEC,AD=AE.求證:BE=CD.
17.(7分),長4m的樓梯AB的傾斜角∠ABD為45°,為了改善樓梯的安全性能,準備重新建造樓梯,使其傾斜角∠ACD為30°,求調(diào)整后的樓梯AC的長.(精確到0.1m, , )
18.(8分)荔枝是云南省的特色水果,小明的媽媽先購買了2千克酸味和3千克甜味,共花費90元;后又購買了1千克酸味和2千克甜味,共花費55元.(每次兩種荔枝的售價都不變)
(1)求酸味和甜味的售價分別是每千克多少元;
(2)如果還需購買兩種荔枝共12千克,要求甜味的數(shù)量不少于酸味數(shù)量的兩倍,請設計一種購買方案,使 所需總費用最低.
19.(8分),轉盤A的三個扇形面積相等,分別標有數(shù)字1,2,3,轉盤B的四個扇形面積相等,分別標有數(shù)字1,2,3,4.轉動A、B轉盤各一次,當轉盤停止轉動時,將指針所落扇形中的兩個數(shù)字相加(當指針落在四個扇形的交線上時,重新轉動轉盤).
(1)用樹狀圖或列表法列出所有可能出現(xiàn)的結果;
(2)若規(guī)定兩個數(shù)字的和為5時甲贏,兩個數(shù)字的
和為4時乙贏,請問這個游戲?qū)?、乙兩人是否公?
20.(7分),菱形ABCD的對角線AC,BD相交于點O,且DE∥AC,AE∥BD.
求證:四邊形AODE是矩形.
21.(9分)某學校為了增強學生體質(zhì),決定開放以下球類活動項目:A.籃球、B.乒乓球、C.排球、D.足球.為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結果繪制成了兩幅不完整的統(tǒng)計圖(①,圖②),請回答下列問題:
(1)這次被調(diào)查的學生共有多少人?
(2)請你將條形統(tǒng)計圖補充完整;
(3)若該校共有學生1900人,
請你估計該校喜歡D項目的人數(shù).
22.(8分),在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC、AC交于點D、E,過點D作DF⊥AC于F.
(1)求證:DF是⊙O的切線;
(2)若⊙O的半徑為2,BC= ,求DF的長.
23.(9分),拋物線y=ax2+bx過A(4,0),B(1,3)兩點,點C、B關于拋物線的對稱軸對稱,過點B作直線BH⊥x軸,交x軸于點H.
(1)求拋物線的表達式;
(2)直接寫出點C的坐標,并求出△ABC的面積;
(3)點P是拋物線上一動點,且位于第四象限,
當△ABP的面積為6時,求出點P的坐標.
2017年臨沂數(shù)學中考模擬試題答案
一、填空題(本大題共6個小題,每小題3分,滿分18分)
1.-4的相反數(shù)是 .
【考點】相反數(shù).
【分析】根據(jù)只有符號不同的兩個數(shù)互為相反數(shù),0的相反數(shù)是0即可求解.
【解答】解:﹣4的相反數(shù)是4.
故答案為:4.
【點評】此題主要考查相反數(shù)的意義,較簡單.
2.函數(shù) 中自變量x 的取值范圍是 .
【考點】函數(shù)自變量的取值范圍.
【分析】根據(jù)被開方數(shù)大于等于0列不等式求解即可.
【解答】解:由題意得,x﹣1≥0,
解得x≥1.
故答案為:x≥1.
【點評】本題考查了函數(shù)自變量的范圍,一般從三個方面考慮:
(1)當函數(shù)表達式是整式時,自變量可取全體實數(shù);(2)當函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當函數(shù)表達式是二次根式時,被開方數(shù)非負.
3.,直線l1∥l2,CD⊥AB于點D,∠1=44°,則∠2的度數(shù)為 .
【考點】平行線的性質(zhì);垂線.
【分析】先在直角三角形CBD中可求得∠CBD的度數(shù),然后依據(jù)平行線的性質(zhì)可求得∠2的度數(shù).
【解答】解:∵CD⊥AB于點D,
∴∠CDB=90°.
∴∠CBD=90°-∠1=46°.
∵l1∥l2,
∴∠2=∠CBD=46°.
故答案為:46°.
【點評】本題主要考查了平行線的性質(zhì),解題時注意:兩直線平行,內(nèi)錯角相等.
4.已知一個等腰三角形的兩邊長分別為3和6,則該等腰三角形的周長是 .
【考點】三角形三邊關系;等腰三角形的性質(zhì).
【專題】計算題.
【分析】由三角形的三邊關系可知,其兩邊之和大于第三邊,兩邊之差小于第三邊.
【解答】解:由三角形的三邊關系可知,由于等腰三角形兩邊長分別是3和6,
所以其另一邊只能是6,故其周長為6+6+3=15.
故答案為15.
【點評】本題主要考查了三角形的三邊關系問題,能夠利用三角形的三邊關系求解一些簡單的計算、證明問題.
5.若x1,x2是一元二次方程x2﹣2x+1=0的兩個根,則x 1﹣x 1 x 2+ x 2的值為 .
【考點】根與系數(shù)的關系.
【分析】根據(jù)一元二次方程根與系數(shù)之間的關系得出兩根之和,兩根之積,再代值計算即可.
【解答】解:∵x1,x2是一元二次方程x2﹣2x+1=0的兩個根,
∴x1+x2=2,x1x2=1,
∴x 1﹣x 1 x 2+ x 2=(x1+x2)﹣x1x2=2﹣1=1;
故答案為:1.
【點評】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,則x1+x2= ,x1x2= .
6.,在平面直角坐標系中,直線l:y =x+2交x軸于點A,交y軸于點A1,點A2,A3,…在直線l上,點B1,B2,B3,…在x軸的正半軸上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均為等腰直角三角形,直角頂點都在x軸上,則第n個等腰直角三角形AnBn﹣1Bn頂點Bn的橫坐標為 .
【考點】規(guī)律型:點的坐標.
【分析】先求出B1、B2、B3…的坐標,探究規(guī)律后,即可根據(jù)規(guī)律解決問題.
【解答】解:由題意得OA=OA1=2,
∴OB1=OA1=2,
B1B2=B1A2=4,B2A3=B2B3=8,
∴B1(2,0),B2(6,0),B3(14,0)…,
2=22﹣2,6=23﹣2,14=24﹣2,…
∴Bn的橫坐標為2n+1﹣2.
故答案為2n+1﹣2.
二、選擇題(本大題共8個小題,每小題只有一個正確選項,每小題4分,滿分32分)
7.下列運算正確的是( )
A. B. C. D.
【考點】冪的乘方與積的乘方;算術平方根;合并同類項;完全平方公式.
【分析】根據(jù)冪的乘方和積的乘方,即可解答.
【解答】
解:A、 ,故本選項錯誤;
B、 ,故本選項錯誤;
C、 ,故本選項錯誤;
D、 ,正確;
故選:D.
【點評】本題考查了冪的乘方和積的乘方,解決本題的關鍵是熟記冪的乘方和積的乘方.
8.已知一個正多邊形的內(nèi)角是140°,則這個正多邊形的邊數(shù)是( )
A.6 B.7 C.8 D.9
【考點】多邊形內(nèi)角與外角.
【專題】計算題;推理填空題.
【分析】首先根據(jù)一個正多邊形的內(nèi)角是140°,求出每個外角的度數(shù)是多少;然后根據(jù)外角和定理,求出這個正多邊形的邊數(shù)是多少即可.
【解答】解:360°÷(180°﹣140°)=360°÷40°=9.
答:這個正多邊形的邊數(shù)是9.
故選:D.
【點評】此題主要考查了多邊形的內(nèi)角與外角,要熟練掌握,解答此題的關鍵是要明確多邊形的外角和定理.
9.是由4個大小相同的正方體組合而成的幾何體,其左視圖是( )
A. B. C. D.
【考點】簡單組合體的三視圖.
【分析】從左面看:共有1列,有2個小正方形;據(jù)此可畫出圖形.
【解答】解:所示幾何體的左視圖是.
故選:A.
【點評】考查簡單組合體的三視圖;用到的知識點為:主視圖,左視圖,俯視圖分別是從物體的正面,左面,上面看得到的圖形.
10.云南高鐵自開通以來,發(fā)展速度不斷加快,現(xiàn)已成為云南市民主要出行方式之一.今年五一期間安全運輸乘客約5460000人次.用科學記數(shù)法表示5460000為( )
A.5.46×107 B.5.46×106 C.5.5×106 D.546×104
【考點】科學記數(shù)法—表示較大的數(shù).
【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).
【解答】解:用科學記數(shù)法表示5460000為5.46×106.
故選B.
【點評】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.
11.,點A,B,C在⊙O上,若∠BAC=45°,OB=2,則圖中陰影部分的面積為( )
A.π-4 B. π-1 C.π-2 D. π-2
【考點】圓周角定理;扇形面積的計算.
【分析】先證得△OBC是等腰直角三角形,然后根據(jù)S陰影=S扇形OBC﹣S△OBC即可求得.
【解答】解:∵∠BAC=45°,
∴∠BOC=90°, ∴△OBC是等腰直角三角形,
∵OB=2, ∴S陰影=S扇形OBC﹣S△OBC= π×22﹣ ×2×2=π﹣2.
故選C.
【點評】本題考查的是圓周角定理及扇形的面積公式,熟記扇形的面積公式是解答此題的關鍵.
12.某中學籃球隊12名隊員的年齡如下表所示:
年齡(歲) 13 14 15 16
人數(shù) 2 5 4 1
則這12名隊員的年齡的眾數(shù)和中位數(shù)分別是( )
A.14,14 B.14,14.5 C.14,15 D.15,14
【考點】眾數(shù);中位數(shù).
【分析】眾數(shù)就是出現(xiàn)次數(shù)最多的數(shù),而中位數(shù)就是大小處于中間位置的數(shù),根據(jù)定義即可求解.
【解答】解:在這12名隊員的年齡數(shù)據(jù)里,14歲出現(xiàn)了5次,次數(shù)最多,因而眾數(shù)是14;
12名隊員的年齡數(shù)據(jù)里,第6和第7個數(shù)據(jù)的平均數(shù)是14,因而中位數(shù)是14.
故選:A.
【點評】本題考查了眾數(shù)和中位數(shù)的概念:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).
13.若點A(﹣4,3)、B(m,2)在同一個反比例函數(shù)的圖象上,則m的值為( )
A.6 B.﹣6 C.12 D.﹣12
【考點】反比例函數(shù)圖象上點的坐標特征.
【分析】根據(jù)反比例函數(shù)y= 中,k=xy為定值即可得出結論.
【解答】解:∵點A(﹣4,3)、B(m,2)在同一個反比例函數(shù)的圖象上,
∴(﹣4)×3=2m,解得m=﹣6.
故選B.
>>>下一頁更多“2017年臨沂數(shù)學中考模擬試題及答案”