高一數(shù)學說課稿模板五篇
不去耕耘,不去播種,再肥的沃土也長不出莊稼,不去奮斗,不去創(chuàng)造,再美的青春也結(jié)不出碩果。不要讓追求之舟停泊在幻想的港灣,而應揚起奮斗的風帆,駛向現(xiàn)實生活的大海。下面給大家?guī)硪恍╆P于高一數(shù)學說課稿模板五篇,希望對大家有所幫助。
高一數(shù)學說課稿模板1
等差數(shù)列
一、教材分析
1、教材的地位和作用:
數(shù)列是高中數(shù)學重要內(nèi)容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學習數(shù)列也為進一步學習數(shù)列的極限等內(nèi)容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了學習對比的依據(jù)。
2、教學目標
根據(jù)教學大綱的要求和學生的實際水平,確定了本次課的教學目標
a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導過程及思想;初步引入“數(shù)學建模”的思想方法并能運用。
b在能力上:培養(yǎng)學生觀察、分析、歸納、推理的能力;在領會函數(shù)與數(shù)列關系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。
c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習慣。
3、教學重點和難點
根據(jù)教學大綱的要求我確定本節(jié)課的教學重點為:
①等差數(shù)列的概念。
②等差數(shù)列的通項公式的推導過程及應用。
由于學生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導等差數(shù)列的同項公式是這節(jié)課的一個難點。同時,學生對“數(shù)學建?!钡乃枷敕椒ㄝ^為陌生,因此用數(shù)學思想解決實際問題是本節(jié)課的另一個難點。
二、學情分析對于三中的高一學生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發(fā)、研究和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。
二、教法分析
針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學方法,通過問題激發(fā)學生求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發(fā)現(xiàn)、分析和解決問題。
三、學法指導在引導分析時,留出學生的思考空間,讓學生去聯(lián)想、探索,同時鼓勵學生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
四、教學程序
本節(jié)課的教學過程由(一)復習引入(二)新課探究(三)應用例解(四)反饋練習(五)歸納小結(jié)(六)布置作業(yè),六個教學環(huán)節(jié)構成。
(一)復習引入:
1.從函數(shù)觀點看,數(shù)列可看作是定義域為__________對應的一列函數(shù)值,從而數(shù)列的通項公式也就是相應函數(shù)的______ 。(N﹡;解析式)
通過練習1復習上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準備。
2. 小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為: 100,98,96,94,92 ①
3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為 5,10,15,20,25 ②
通過練習2和3 引出兩個具體的等差數(shù)列,初步認識等差數(shù)列的特征,為后面的概念學習建立基礎,為學習新知識創(chuàng)設問題情境,激發(fā)學生的求知欲。由學生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學生由具體到抽象、由特殊到一般的認知能力。
(二) 新課探究
1、由引入自然的給出等差數(shù)列的概念:
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):
① “從第二項起”滿足條件;
②公差d一定是由后項減前項所得;
③每一項與它的前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)” );
在理解概念的基礎上,由學生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學語言,歸納出數(shù)學表達式:
an+1-an=d (n≥1)
同時為了配合概念的理解,我找了5組數(shù)列,由學生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。
1. 9 ,8,7,6,5,4,……;√ d=-1
2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01
3. 0,0,0,0,0,0,…….; √ d=0
4. 1,2,3,2,3,4,……;×
5. 1,0,1,0,1,……×
其中第一個數(shù)列公差<0, 第二個數(shù)列公差>0,第三個數(shù)列公差=0
由此強調(diào):公差可以是正數(shù)、負數(shù),也可以是0
高一數(shù)學說課稿模板2
一、教材分析
1.教材背景
作為曲線內(nèi)容學習的開始,“曲線與方程”這一小節(jié)思想性較強,約需三課時,第一課時介紹曲線與方程的概念;第二課時講曲線方程的求法;第三課時側(cè)重對所求方程的檢驗.
本課為第二課時
主要內(nèi)容有:解析幾何與坐標法;求曲線方程的方法(直譯法)、步驟及例題探求.
2.本課地位和作用
承前啟后,數(shù)形結(jié)合
曲線和方程,既是直線與方程的自然延伸,又是圓錐曲線學習的必備,是后面平面曲線學習的理論基礎,是解幾中承上啟下的關鍵章節(jié).
“曲線”與“方程”是點的軌跡的兩種表現(xiàn)形式.“曲線”是軌跡的幾何形式,“方程”是軌跡的代數(shù)形式;求曲線方程是用方程研究曲線的先導,是解析幾何所要解決的兩大類問題的首要問題.體現(xiàn)了坐標法的本質(zhì)——代數(shù)化處理幾何問題,是數(shù)形結(jié)合的典范.
后繼性、可探究性
求曲線方程實質(zhì)上就是求曲線上任意一點(x,y)橫縱坐標間的等量關系,但曲線軌跡常無法事先預知類型,通過多媒體演示可以生動展現(xiàn)運動變化特點,但如何獲得曲線的方程呢?通過創(chuàng)設情景,激發(fā)學生興趣,充分發(fā)揮其主體地位的作用,學習過程具有較強的探究性.
同時,本課內(nèi)容又為后面的軌跡探求提供方法的準備,并且以后還會繼續(xù)完善軌跡方程的求解方法.
數(shù)學建模與示范性作用
曲線的方程是解析幾何的核心.求曲線方程的過程類似于數(shù)學建模的過程,它貫穿于解析幾何的始終,通過本課例題與變式,要總結(jié)規(guī)律,掌握方法,為后面圓錐曲線等的軌跡探求提供示范.
數(shù)學的文化價值
解析幾何的發(fā)明是變量數(shù)學的第一個里程碑,也是近代數(shù)學崛起的兩大標志之一,是較為完整和典型的重大數(shù)學創(chuàng)新史例.解析幾何創(chuàng)始人特別是笛卡兒的事跡和精神——對科學真理和方法的追求、質(zhì)疑的科學精神等都是富有啟發(fā)性和激勵性的教育材料.可以根據(jù)學生實際情況,條件允許時指導學生課后收集相關資料,通過分析、整理,寫出研究報告.
3.學情分析
我所授課班級的學生數(shù)學基礎比較好,思維活躍,在剛剛學習了“曲線的方程和方程的曲線”后,學生對這種必須同時具備純粹性和完備性的概念有了初步的認識,對用代數(shù)方法研究幾何問題的科學性、準確性和優(yōu)越性等已有了初步了解,對具體(平面)圖形與方程間能否對應、怎樣對應的學習已經(jīng)有了自然的求知欲望.
二、目標分析
1.教學目標
知識技能目標
理解坐標法的作用及意義.
掌握求曲線方程的一般方法和步驟,能根據(jù)所給條件,選擇適當坐標系求曲線方程.
過程性目標
通過學生積極參與,親身經(jīng)歷曲線方程的獲得過程,體驗坐標法在處理幾何問題中的優(yōu)越性,滲透數(shù)形結(jié)合的數(shù)學思想.
通過自主探索、合作交流,學生歷經(jīng)從“特殊——一般——特殊”的認知模式,完善認知結(jié)構.
通過層層深入,培養(yǎng)學生發(fā)散思維的能力,深化對求曲線方程本質(zhì)的理解.
情感、態(tài)度與價值觀目標
通過合作學習,學生間、師生間的相互交流,感受探索的樂趣與成功的喜悅,體會數(shù)學的理性與嚴謹,逐步養(yǎng)成質(zhì)疑的科學精神.
展現(xiàn)人文數(shù)學精神,體現(xiàn)數(shù)學文化價值及其在在社會進步、人類文明發(fā)展中的重要作用.
2.教學重點和難點
重點:求曲線方程的方法、步驟
難點:幾何條件的代數(shù)化
依據(jù):求曲線方程是解幾研究的兩大類問題之一,既是重點也是難點,是高考解答題取材的源泉.主要包括兩種類型求曲線的方程:一是已知曲線形狀時常用待定系數(shù)法;二是動點軌跡方程探求,本課的重點主要是探索動點的曲線方程.
曲線與方程是貫穿平面解幾的知識,是解析幾何的核心.求曲線方程是幾何問題得以代數(shù)研究的先決,求曲線方程的過程類似數(shù)學建模的過程,是課堂上必須突破的難點.
三、教學方法及教材處理
1.教學方法:探究發(fā)現(xiàn)教學法.
遵循以學生為主體,教師為主導,發(fā)展為主旨的現(xiàn)代教育原則,以問題的提出、問題的解決為主線,始終在學生知識的“最近發(fā)展區(qū)”設置問題,通過學生主動探索、積極參與、共同交流與協(xié)作,在教師的引導和合作下,學生“跳一跳”就能摘得果實,于問題的分析和解決中實現(xiàn)知識的建構和發(fā)展,通過不斷探究、發(fā)現(xiàn),讓學習過程成為心靈愉悅的主動認知過程,使師生的生命活力在課堂上得到充分的發(fā)揮.
2.學法指導
學生學法:互相討論、探索發(fā)現(xiàn)
由于學生在嘗試問題解決的過程中常會在新舊知識聯(lián)系、策略選擇、思想方法運用等方面遇到一定的困難,需要教師指導.作為學生活動的組織者、引導者、參與者,教師要幫助學生重溫與問題解決有關的舊知,給予學生思考的時間和表達的機會,共同對(解題)過程進行反思等,在師生(生生)互動中,給予學生啟發(fā)和鼓勵,在心理上、認知上予以幫助.
這樣,在學法上確立的教法,能幫助學生更好地獲得完整的認知結(jié)構,使學生思維、能力等得到和諧發(fā)展.
3.設計理念:
求曲線方程就是將曲線上點的幾何表示形式轉(zhuǎn)化為代數(shù)表示形式。在這轉(zhuǎn)化過程中,學生通過積極參與、勇于探索的學習方式,讓學生的學習過程成為教師指導下的再創(chuàng)造,這也正是建構主義理論的本質(zhì)要求;遵循學生認知規(guī)律,尊重學生個體差異,立足教材,通過對例題的再創(chuàng)造,體現(xiàn)理論聯(lián)系實際、循序漸進和因材施教的教學原則,讓不同層次的學生得到不同層度的發(fā)展;通過激發(fā)興趣,強調(diào)自主探索與合作交流,讓學生逐步地從學會走向會學,由被動走向主動,由課堂走向社會,為學生的終身學習和終身發(fā)展奠定良好的基礎,也是當前新課程所追求的基本理念.
四、教學過程(教學設計)
根據(jù)本課教學內(nèi)容幾何特性外化的特點,抓住形成軌跡的動點具備的幾何條件,運用坐標化的手段及等價轉(zhuǎn)化與數(shù)形結(jié)合的思想方法,突破難點,突出重點.本課的教學設計思路是:
創(chuàng)設情景——從感性的軌跡(圖形)認識,到解決生活上的實例,激發(fā)學生的求知欲望,抓住學生迫切一試的認知心理,自然引入坐標法的意義及曲線方程的求法.
例題探求——例題一體現(xiàn)知識的承前啟后.通過例題一的呈現(xiàn),學生借助已有的知識經(jīng)驗,自主探求獲得問題的求解,在教師的引導下,讓學生感受求曲線方程的含義及求解步驟;例題二及變式解決建系難點,建系的開放性,對學生是一種挑戰(zhàn),也是一種創(chuàng)造;兩個例題由淺入深,循序漸進,體現(xiàn)因材施教.至此,學生已能初步了解求曲線方程的一般方法和步驟了.
歸納步驟——學生親身經(jīng)歷求曲線方程的過程,讓學生歸納(用自己的語言)、表述求解的步驟,體現(xiàn)從“特殊——一般”認知規(guī)律,逐步實現(xiàn)教學目標.
變式練習——通過對例題的變式,由學生求解、回答變式后的含義,深化對認知結(jié)構的理解,初步體會數(shù)學的理性與嚴謹,逐步養(yǎng)成質(zhì)疑與反思的習慣.
反饋練習——利用學生探索而發(fā)展來的認知水平,運用獲得的知識解決情景創(chuàng)設中的實際問題,一方面可以考察學生運用所學數(shù)學知識解決實際問題的意識和能力;另一方面是學生思維的自然順應,自然釋放,是“一般——特殊”的過程.全面完成教學目標.
高一數(shù)學說課稿模板3
一教材分析
(1)地位和作用
向量是近代數(shù)學中重要和基本的概念之一,有著深刻的幾何背景,是解決幾何問題的有力工具.向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉(zhuǎn)化為向量的加(減)法,數(shù)乘向量,數(shù)量積運算(運算率),從而把圖形的基本性質(zhì)轉(zhuǎn)化為向量的運算體系.向量是溝通代數(shù),幾何與三角函數(shù)的一種工具,有著極其豐富的實際背景,在數(shù)學和物理學科中具有廣泛的應用.
平面向量的基本概念是在學生了解了物理學中的有關力,位移等矢量的概念的基礎上進一步對向量的深入學習.為學習向量的知識體系奠定了知識和方法基礎.
(2)教學結(jié)構的調(diào)整
課本在這一部分內(nèi)容的教學為一課時,首先從小船航行的距離和方向兩個要素出發(fā),抽象出向量的概念,并重點說明了向量與數(shù)量的區(qū)別.然后介紹了向量的幾何表示,向量的長度,零向量,單位向量,平行向量,共線向量,相等向量等基本概念.為使學生更好地掌握這些基本概念,同時深化其認知過程和探究過程.在教學中我將教學的順序做如下的調(diào)整:將本節(jié)教學中認知過程的教學內(nèi)容適當集中,以突出這節(jié)課的主題;例題,習題部分主要由學生依照概念自行分析,獨立完成.
(3)重點,難點,關鍵
由于本節(jié)課是本章內(nèi)容的第一節(jié)課,是學生學習本章的基礎.為了本章后面知識的學習,首先必須掌握向量的概念,要抓住向量的本質(zhì):大小與方向.所以向量,相等向量的概念,向量的幾何表示是這節(jié)課的重點.本節(jié)課是為高一后半學期學生設計的,盡管此時的學生已經(jīng)有了一定的學習方法和習慣,但根據(jù)以往的教學經(jīng)驗,多數(shù)學生對向量的認識還比較單一,僅僅考慮其大小,忽略其方向,這對學生的理解能力要求比較高,所以我認為向量概念也是這節(jié)課的難點.而解決這一難點的關鍵是多用復雜的幾何圖形中相等的有向線段讓學生進行辨認,加深對向量的理解.
二教學目標的確定
根據(jù)本課教材的特點,新大綱對本節(jié)課的教學要求,學生身心發(fā)展的合理需要,我從三個方面確定了以下教學目標:
(1)基礎知識目標:理解向量,零向量,單位向量,共線向量,平行向量,相等向量的概念,會用字母表示向量,能讀寫已知圖中的向量.會根據(jù)圖形判定向量是否平行,共線,相等.
(2)能力訓練目標:培養(yǎng)學生觀察、歸納、類比、聯(lián)想等發(fā)現(xiàn)規(guī)律的一般方法,培養(yǎng)學生觀察問題,分析問題,解決問題的能力。
(3)情感目標:讓學生在民主、和諧的共同活動中感受學習的樂趣。
三教學方法的選擇
Ⅰ教學方法
本節(jié)課我采用了”啟發(fā)探究式的教學方法,根據(jù)本課教材的特點和學生的實際情況在教學中突出以下兩點:
(1)由教材的特點確立類比思維為教學的主線.
從教材內(nèi)容看平面向量無論從形式還是內(nèi)容都與物理學中的有向線段,矢量的概念類似.因此在教學中運用類比作為思維的主線進行教學.讓學生充分體會數(shù)學知識與其他學科之間的聯(lián)系以及發(fā)生與發(fā)展的過程.
(2)由學生的特點確立自主探索式的學習方法
通常學生對于概念課學起來很枯燥,不感興趣,因此要考慮學生的情感需要,找一些學生感興趣的題材來激發(fā)學生的學習興趣,另外,學生都有表現(xiàn)自己的欲望,希望得到老師和其他同學的認可,要多表揚,多肯定來激勵他們的學習熱情.考慮到我校學生的基礎較好,思維較為活躍,對自主探索式的學習方法也有一定的認識,所以在教學中我通過創(chuàng)設問題情境,啟發(fā)引導學生運用科學的思維方法進行自主探究.將學生的獨立思考,自主探究,交流討論等探索活動貫穿于課堂教學的全過程,突出學生的主體作用.
Ⅱ教學手段
本節(jié)課中,除使用常規(guī)的教學手段外,我還使用了多媒體投影儀和計算機來輔助教學.多媒體投影為師生的交流和討論提供了平臺;計算機演示的作圖過程則有助于滲透數(shù)形結(jié)合思想,更易于對概念的理解和難點的突破.
四教學過程的設計
Ⅰ知識引入階段---提出學習課題,明確學習目標
(1) 創(chuàng)設情境——引入概念
數(shù)學學習應該與學生的生活融合起來,從學生的生活經(jīng)驗和已有的知識背景出發(fā),讓他們在生活中去發(fā)現(xiàn)數(shù)學、探究數(shù)學、認識并掌握數(shù)學。
由生活中具體的向量的實例引入:大海中船只的航線,中國象棋中”馬”,”象”的走法等.這些符合高中學生思維活躍,想象力豐富的特點,有利于激發(fā)學生的學習興趣.
(2) 觀察歸納——形成概念
由實例得出有向線段的概念,有向線段的三個要素:起點,方向,長度.明確知道了有向線段的起點,方向和長度,它的終點就確定.再有目的的進行設計,引導學生概括總結(jié)出本課新的知識點:向量的概念及其幾何表示。
(3) 討論研究——深化概念
在得到概念后進行歸納,深化,之后向?qū)W生提出以下三個問題:
①向量的要素是什么?
②向量之間能否比較大小?
③向量與數(shù)量的區(qū)別是什么?
同時指出這就是本節(jié)課我們要研究和學習的主題.
Ⅱ知識探索階段---探索平面向量的平行向量.相等向量等概念
(1) 總結(jié)反思——提高認識
方向相同或相反的非零向量叫平行向量,也即共線向量,并且規(guī)定0與任一向量平行.長度相等且方向相同的向量叫相等向量,規(guī)定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件.
(2)即時訓練—鞏固新知
為了使學生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設計了一組即時訓練題,通過學生的觀察嘗試,討論研究,教師引導來鞏固新知識。
[練習1]判斷下列命題是否正確,若不正確,請簡述理由.
高一數(shù)學說課稿模板4
坐標軸的平移說課稿
一、教材分析
1、坐標變換是化簡曲線方程,以便于討論曲線的性質(zhì)和畫出曲線的一種重要方法。這一節(jié)教材主要講坐標軸的平移,要求學生在正確理解新舊坐標之間的關系的基礎上掌握平移公式;并能利用平移公式對新舊坐標系中點的坐標和曲線的方程進行互化。這就是本節(jié)課的教學目的之一。
2、本教材的重點是平移公式的推導及其簡單應用。為了解決重點,教學中先以圓(x-3)2+(y-2)2=52化為x'2+y'2=52這個例子引入來說明,雖然點的位置沒有改變曲線的位置、形狀和大小沒有改變,但是由于坐標系的改變,點的坐標和曲線的方程也隨著改變,而且適當?shù)刈儞Q坐標系,曲線的方程就可以化簡,以此指明平移坐標軸的意義和作用,并由此引出平移的定義,導出平移公式。在推導平移公式時,先從特殊到一般,通過觀察、歸納、猜想和推導,得出平移公式,還引導學生運用代數(shù)中剛學過的復數(shù)的幾何意義來證明,既開闊視野,溝通學科知識,又培養(yǎng)學生的思維能力,同時還可通過一組練習,讓學生正用、逆用、變用平移公式,達到進一步加深理解、熟練掌握公式的目的,進而培養(yǎng)學生的發(fā)現(xiàn)、推理能力和教學思想方法。
3、本節(jié)教材的難點是平移公式兩種形式何時運用,學生易產(chǎn)生混淆,教學中應通過實例讓學生自己領會,并及時加以小結(jié),掌握其規(guī)律,加強公式的記憶并培養(yǎng)靈活運用知識的能力。
4、本節(jié)寓德于教的要點,主要是通過事物變化過程的內(nèi)在聯(lián)系,認識變與不變的矛盾對立統(tǒng)一規(guī)律,對學生進行辯證唯物主義的教育。
二、教學過程
(一)提出問題
教師先在黑板上畫出圖形,讓學生觀察、思考并提問以下問題:
1、如圖,點O'和○O'關于坐標系xoy的坐標和方程各是什么?點O'和○O'關于坐標系x'o'y'的坐標和方程各是什么?兩個方程,那一個較為簡單?
(學生回答,教師在黑板上板書:)
直角坐標系 點O'的坐標 ○O'的方程
<在xoy中 (3,2); (x-3)2+(y-2)2=52
在x'o'y'中 (0,0) x'2+y'2=52
兩個方程,顯然后一個方程簡單。
(二)引入新課
(繼續(xù)提問)
1、從上面的例子可以看出什么?
(答) (1)對于同一點或同一曲線,由于 選取的坐標系不同,點的坐標功曲線的方程也不同。
(2)把一個坐標系變換為另一個適當?shù)淖鴺讼担梢允骨€的方程簡化,便于研究曲線的性質(zhì)。
教師繼續(xù)提出新的話題,即如何把一個坐標系變換為另一個適當?shù)淖鴺讼的?我們再從上面的例子來觀察坐標系
xoy與x'o'y'有何異同點呢?(提問)
(答)(1)坐標軸的方向和長度單位都相同--不變
(2)坐標系的原點的位置不同--變
(教師歸納) 這種坐標系的變換叫做坐標軸的平移,簡稱移軸。
(讓學生打開課本閱讀移軸的定義,教師在黑板上板書)
(板書) 坐標軸的平移
(三)講授新課
(板書)1、坐標軸平移的定義
2、坐標軸平移公式
思路:(1)以特殊到一般,在已畫出的圖形上任取四個點(分別在第一、二、三、四系限或坐標軸上)讓學生分別寫出在新、舊坐標系里的坐標,并觀察、分析出它們的關系。
(答) 坐標平面上任意一點在原坐標系中坐標和在新坐標系中的坐檔,歸納出來有如下關系:
(板書) 原系橫坐標x=新系橫坐標 x'+3
原系縱坐標y=新系縱坐標y'+2
現(xiàn)在把(3,2)推廣到一般(h,k)能否得出 x=x'+h
y=y'+k
這個公式呢?(讓學生自己動手證明)
思路(2)第一步用有向線段的數(shù)量表示x,y,h,k,x',和y',
第二步據(jù)圖進行推導
第三步由推出的公式 x=x'+h (1)再推出 x'=x-h
y=y'+k y'=y-h
小結(jié):這兩個公式都叫做平移(移軸)公式。同學們還可以運用代數(shù)中學過的向量加、減法則,建立復平面來證明(留給學生課后自己作練習)
3、平移公式的應用
(1)利用平移公式求在新坐標內(nèi)點的新坐標
例與練:①平移坐標軸,把原點平移到O'(-4,3),求A(0,0), B(4,-5)的新坐標;C(5,-7) , D(4,-6)的舊坐標。
②平移坐標軸,把原點平移到O'( )使A(2,4)的新坐標為(3,2); B(-4,0)的舊坐標為(0,3)
(2)利用平移公式化簡方程
例與練:(課本例)平移坐軸,把原點移到O'(2,-1),求下列曲線關于新坐標系的方程,并畫出新舊坐標軸和曲線。
(x-2)
① x=2 ②y=-1 ③ (x+2)2 /9+(y+1)2/4=1
分析:解①②時 用分別把x=2,y=-1代入公式
(2) 得x'=0 y'=0(比課本中的解法簡單)而在解③時,卻要用公式(1)分別用x=+2,y=y'-1代入原方程得出新方程x'/9+y'/4=1 (引導學生正確作出圖)
小結(jié): 從例中可以看出,要把方程(x-2)2/9+ (y+1)2/4
化為簡單的方程x'2/9+y'2/4 =1 ,可把 x-2=x' y+1=y',得出應
把坐標原點平移到(2,-1),由此可推廣,形如(x-h)2/a2+(y-k)2/b2的方程如何化簡。
選擇題1.坐標軸平移后,下列各數(shù)值中發(fā)生變化的是( )
(A)某兩點的距離 (B)某線權中點的坐標
(C)某兩條直線的夾角 (D)某三角形的面積
答案選(C) 從此題可看出,坐標軸平移后,與坐標有關的量發(fā)生變化,但圖形本身的幾何性質(zhì)不變。
選擇題2:曲線x2+y2+2x-4y+1=0在新坐標系中的方程是x'2+y'2=4,則新坐標系原點在舊坐標系中的坐標是( )
(A) (-1,2) (B) (1,-2) (C)2,-1) (D) (-2,1)
分析:把x2+y2+2x-4y+1=0配方為(x+1)2+(y-2)2=4
由x+1=x'===h=-1 y-2=y'===k=2 故應選(A)
(四)教師小結(jié):今天講的主要內(nèi)容是坐標軸平移的意義,平移公式及其簡單應用。移軸的目的在幾何上是使曲線圖形的中心(或頂點)與原點重合,使圖形"居中",而在代數(shù)上則是將一般二元二次方程通過代數(shù)變形(變量代換),消去其中的一次項,從而使方程簡化,這個問題,下一節(jié)課將作更具體深入的研究與探討。
平移公式的兩種形式何時應用較好方便,一般說來,由點的舊坐標求其新坐標時用(2)較方便,而由曲線的原方程求其新方程時用(1)較方便,但這也不是固定不變的,如例2中把方程x=2化為新方程,直接代入(2),馬上就可求出x'=0這個新方程。
平移坐標軸,可以簡化曲線的方程,但不含改變曲線原來的性質(zhì)與不變,可以看出其中的辯證關系和內(nèi)在規(guī)律。
(五)布置作業(yè)(略)
三、課后附記
1、本節(jié)課曾在福州市教育學院組織的青年教師培訓班的觀摩課上講授,反映較好,從學生的作業(yè)反饋及下節(jié)課的復習提問,利用坐標軸的平移化簡二元二次方程中,引用平移公式進行運算,學生都能較熟練掌握,在半期考中,關于平移公式的應用題得分率在90%以上,說明本節(jié)課的效果較好,但因本教材在整個圓錐曲線教材內(nèi)容中占的分量不重,公式較少使用,容易出現(xiàn)反生與遺忘,因此在平時教學中可適時加以引用。
2、本節(jié)課的設計遵照"一體三重五環(huán)節(jié)"的福八中數(shù)學教學的特色,重視發(fā)揮學生的主體與教師的主導作用,重視"過程"的教學,盡量做到:提出問題,循循誘導;疏通思路,耐心開導;解題練習,精心指導;存在不足,熱情輔導;掌握過程,盡心引導;真正體現(xiàn)重情善導的教風與特色。
高一數(shù)學說課稿模板5
集合的含義與表示
一.教材分析:集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學的一個重要的基礎,
一方面,許多重要的數(shù)學分支,都建立在集合理論的基礎上。另一方面,集合
論及其所反映的數(shù)學思想,在越來越廣泛的領域種得到應用。
二.目標分析:
教學重點.難點
重點:集合的含義與表示方法. 難點:表示法的恰當選擇.
教學目標
l.知識與技能
(1)通過實例,了解集合的含義,體會元素與集合的屬于關系;
(2)知道常用數(shù)集及其專用記號; (3)了解集合中元素的確定性.互異性.無序性;
(4)會用集合語言表示有關數(shù)學對象;
2. 過程與方法
(1)讓學生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.
(2)讓學生歸納整理本節(jié)所學知識.
3. 情感.態(tài)度與價值觀
使學生感受到學習集合的必要性,增強學習的積極性.
三. 教法分析
1. 教學方法:學生通過閱讀教材,自主學習.思考.交流.討論和概括,從而更好地完成本節(jié)課的教學目標.2. 教學手段:在教學中使用投影儀來輔助教學.
四.過程分析
(一)創(chuàng)設情景,揭示課題
1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學校、現(xiàn)在的班級。
(2)問題:像“家庭”、“學校”、“班級”等,有什么共同特征?
引導學生互相交流. 與此同時,教師對學生的活動給予評價.
2.活動:(1)列舉生活中的集合的例子;(2)分析、概括各實例的共同特征
由此引出這節(jié)要學的內(nèi)容。
設計意圖:既激發(fā)了學生濃厚的學習興趣,又為新知作好鋪墊
(二)研探新知,建構概念
1.教師利用多媒體設備向?qū)W生投影出下面7個實例:
(1)1—20以內(nèi)的所有質(zhì)數(shù);(2)我國古代的四大發(fā)明;
(3)所有的安理會常任理事國; (4)所有的正方形;
(5)海南省在2004年9月之前建成的所有立交橋;
(6)到一個角的兩邊距離相等的所有的點;
(7)國興中學2004年9月入學的高一學生的全體.
2.教師組織學生分組討論:這7個實例的共同特征是什么?
3.每個小組選出——位同學發(fā)表本組的討論結(jié)果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.
4.教師指出:集合常用大寫字母A,B,C,D,?表示,元素常用小寫字母a,b,c,d?表示.
設計意圖:通過實例讓學生感受集合的概念,激發(fā)學習的興趣,培養(yǎng)學生樂于求索的精神
(三)質(zhì)疑答辯,發(fā)展思維
1.教師引導學生閱讀教材中的相關內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等.
2.教師組織引導學生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數(shù);(2)我國的小河流. 讓學生充分發(fā)表自己的建解.
3. 讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.
4.教師提出問題,讓學生思考
b是 (1)如果用A表示高—(3)班全體學生組成的集合,用a表示高一(3)班的一位同學,
高一(4)班的一位同學,那么a,b與集合A分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于.
如果a是集合A的元素,就說a屬于集合A,記作a?A.
如果a不是集合A的元素,就說a不屬于集合A,記作a?A.
(2)如果用A表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合A的關系分別是什么?請用數(shù)學符號分別表示.
(3)讓學生完成教材第6頁練習第1題.
5.教師引導學生回憶數(shù)集擴充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號.并讓學生完成習題1.1A組第1題.
6.教師引導學生閱讀教材中的相關內(nèi)容,并思考.討論下列問題:
(1)要表示一個集合共有幾種方式?
(2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?
(3)如何根據(jù)問題選擇適當?shù)募媳硎痉?
使學生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。
設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。
(四)鞏固深化,反饋矯正
教師投影學習:
(1)用自然語言描述集合{1,3,5,7,9}; (2)用例舉法表示集合A?{x?N|1?x?8}
(3)試選擇適當?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習第2題.
設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象
(五)歸納小結(jié),布置作業(yè)
小結(jié):在師生互動中,讓學生了解或體會下例問題:
1.本節(jié)課我們學習了哪些知識內(nèi)容? 2.你認為學習集合有什么意義?
3.選擇集合的表示法時應注意些什么?
設計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業(yè): 1.課后書面作業(yè):第13頁習題1.1A組第4題.
2. 元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種
呢?如何表示?請同學們通過預習教材.
五.板書分析
高一數(shù)學說課稿模板五篇相關文章: