學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) >

北師大版高一數(shù)學(xué)必修一電子課本

時間: 夢熒0 分享

預(yù)習(xí)課本可以幫助同學(xué)們高效學(xué)習(xí),那么關(guān)于北師大版高一數(shù)學(xué)電子課本怎么學(xué)習(xí)呢?以下是小編準備的一些北師大版高一數(shù)學(xué)必修一電子課本,僅供參考。

高一數(shù)學(xué)必修一電子課本

北師大版高一數(shù)學(xué)必修一電子課本

北師大版高一數(shù)學(xué)必修一電子課本

查看完整版可微信搜索公眾號【5068教學(xué)資料】,關(guān)注后對話框回復(fù)【11】獲取高中數(shù)學(xué)電子課本資源。

高一年級必修一數(shù)學(xué)知識點

集合與元素

一個東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。

例如:你所在的班級是一個集合,是由幾十個和你同齡的同學(xué)組成的集合,你相對于這個班級集合來說,是它的一個元素;

而整個學(xué)校又是由許許多多個班級組成的集合,你所在的班級只是其中的一分子,是一個元素。

班級相對于你是集合,相對于學(xué)校是元素,參照物不同,得到的結(jié)論也不同,可見,是集合還是元素,并不是絕對的。

解集合問題的關(guān)鍵

解集合問題的關(guān)鍵:弄清集合是由哪些元素所構(gòu)成的,也就是將抽象問題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;比如用數(shù)軸來表示集合,或是集合的元素為有序?qū)崝?shù)對時,可用平面直角坐標系中的圖形表示相關(guān)的集合等。

高一上冊數(shù)學(xué)練習(xí)題

1、設(shè)集合A={x?Q|x>-1},則( )

A、??A BA CA D、 ?A

2、設(shè)A={a,b},集合B={a+1,5},若A∩B={2},則A∪B=( )

A、{1,2} B、{1,5} C、{2,5} D、{1,2,5}

3、函數(shù)f(x)?x?1的定義域為( ) x?2

A、[1,2)∪(2,+∞) B、(1,+∞) C、[1,2) D、[1,+∞)

4、設(shè)集合M={x|-2≤x≤2},N={y|0≤y≤2},給出下列四個圖形,其中能表示以集合M為定義域,N為值域的函數(shù)關(guān)系的是( )

5、三個數(shù)70。3,0。37,,㏑0.3,的大小順序是( )

A、 70。3,0.37,,㏑0.3, B、70。3,,㏑0.3, 0.37

C、 0.37, , 70。3,,㏑0.3, D、㏑0.3, 70。3,0.37,

6、若函數(shù)f(x)=x3+x2-2x-2的一個正數(shù)零點附近的函數(shù)值用二分法逐次計算,參考數(shù)據(jù)如下表:

那么方程x3+x2-2x-2=0的一個近似根(精確到0.1)為(

)

A、1.2 B、1.3 C、1.4 D、1.5

x??2,x?07、函數(shù)y???x 的圖像為( ) ??2,x?0

8、設(shè)f(x)?logax(a>0,a≠1),對于任意的正實數(shù)x,y,都有( )

A、f(xy)=f(x)f(y) B、f(xy)=f(x)+f(y)

C、f(x+y)=f(x)f(y) D、f(x+y)=f(x)+f(y)

9、函數(shù)y=ax2+bx+3在(-∞,-1]上是增函數(shù),在[-1,+∞)上是減函數(shù),則( )

A、b>0且a<0 B、b=2a<0 C、

b=2a>0 D、a,b的符號不定

10、某企業(yè)近幾年的年產(chǎn)值如圖,則年

增長率的是

( )(年增長率=年增長值/年產(chǎn)值) (萬元)1000800600400200(年)A、97年

C、99年

B、98年 D、00年

二、填空題(共4題,每題4分)

11、f(x)的圖像如下圖,則f(x)的值域

為 ;

12、計算機成本不斷降低,若每隔3年

計算機價格降低1/3,現(xiàn)在價格為

8100元的計算機,則9年后價格可降為 ;

13、若f(x)為偶函數(shù),當x>0時,f(x)=x,則當x<0時,f(x)= ;

14、老師給出一個函數(shù),請三位同學(xué)各說出了這個函數(shù)的一條性質(zhì): ①此函數(shù)為偶函數(shù);

②定義域為{x?R|x?0};

③在(0,??)上為增函數(shù).

老師評價說其中有一個同學(xué)的結(jié)論錯誤,另兩位同學(xué)的結(jié)論正確。請你寫出一個(或幾個)這樣的函數(shù)一、選擇題(本大題共10小題,每小題4分,滿分40分。)

高一數(shù)學(xué)教學(xué)計劃

一、學(xué)生狀況分析

學(xué)生整體水平一般,成績以中等為主,中上不多,后進生也有一些。幾個班中,從上課一周來看,學(xué)生的學(xué)習(xí)積極性還是比較高,愛問問題的同學(xué)比較多,但由于基礎(chǔ)知識不太牢固,上課效率不是很高。

二、教材簡析

使用人教版《普通高中課程標準實驗教科書數(shù)學(xué)(A版)》,教材在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時代性、典型性和可接受性等,具有親和力、問題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應(yīng)用);必修2有四章(空間幾何體;點線平面間的位置關(guān)系;直線與方程;圓與方程)。

三、教學(xué)任務(wù)

本期授課內(nèi)容為必修1和必修2,必修1在期中考試前完成(約在11月5日前完成);必修2在期末考試前完成(約在12月31日前完成)。

四、教學(xué)質(zhì)量目標

1。獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會數(shù)學(xué)思想和方法。

2。提高空間想象、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。

3。提高學(xué)生提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。

4。發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進行思考和作出判斷。

5。提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

6。具有一定的數(shù)學(xué)視野,逐步認識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,體會數(shù)學(xué)的美學(xué)意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

五、促進目標達成的重點工作及措施

重點工作:

認真貫徹高中數(shù)學(xué)新課標精神,樹立新的教學(xué)理念,以“雙基”教學(xué)為主要內(nèi)容,堅持“抓兩頭、帶中間、整體推進”,使每個學(xué)生的數(shù)學(xué)能力都得到提高和發(fā)展。

分層推進措施

1、重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵學(xué)生,增強學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。

2、合理引入課題,由數(shù)學(xué)活動、故事、提問、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的'概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。

3、加強培養(yǎng)學(xué)生的邏輯思維能力和解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進行辨證唯物主義教育。

4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

5、自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對不同的教材內(nèi)容選擇不同教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動接受知識轉(zhuǎn)化主動學(xué)習(xí)知識。

6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。

高一數(shù)學(xué)必修一教案

一、說課內(nèi)容:

蘇教版高一年級數(shù)學(xué)下冊第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題

二、教材分析:

1、教材的地位和作用

這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。

2、教學(xué)目標和要求:

(1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。

(2)過程與方法:復(fù)習(xí)舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.

(3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強學(xué)好數(shù)學(xué)的愿望與信心.

3、教學(xué)重點:對二次函數(shù)概念的理解。

4、教學(xué)難點:由實際問題確定函數(shù)解析式和確定自變量的取值范圍。

三、教法學(xué)法設(shè)計:

1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程

2、從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程

3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程

四、教學(xué)過程:

(一)復(fù)習(xí)提問

1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?

(一次函數(shù),正比例函數(shù),反比例函數(shù))

2.它們的形式是怎樣的?

(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)

3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件? k值對函數(shù)性質(zhì)有什么影響?

設(shè)計意圖復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k≠0的條件,以備與二次函數(shù)中的a進行比較.

(二)引入新課

函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)。看下面三個例子中兩個變量之間存在怎樣的關(guān)系。(電腦演示)

例1、(1)圓的`半徑是r(cm)時,面積s (cm)與半徑之間的關(guān)系是什么?

解:s=πr(r>0)

例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m)與矩形一邊長x(m)之間的關(guān)系是什么?

解: y=x(20/2-x)=x(10-x)=-x+10x (0

例3、設(shè)人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉(zhuǎn)存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?

解: y=100(1+x)

=100(x+2x+1)

= 100x+200x+100(0

教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?

設(shè)計意圖通過具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系:

(1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。

(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。

(三)講解新課

以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

二次函數(shù)的定義:形如y=ax2+bx+c (a≠0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。

鞏固對二次函數(shù)概念的理解:

1、強調(diào)“形如”,即由形來定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。

2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r>0)

3、為什么二次函數(shù)定義中要求a≠0 ?

(若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)

4、在例3中,二次函數(shù)y=100x2+200x+100中, a=100, b=200, c=100.

5、b和c是否可以為零?

由例1可知,b和c均可為零.

若b=0,則y=ax2+c;

若c=0,則y=ax2+bx;

若b=c=0,則y=ax2.

注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.

設(shè)計意圖這里強調(diào)對二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。

判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.

2163308