學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)>

高二學(xué)年的數(shù)學(xué)知識(shí)點(diǎn)分析

時(shí)間: 贊銳0 分享

在學(xué)習(xí)新知識(shí)的同時(shí)還要復(fù)習(xí)以前的舊知識(shí),肯定會(huì)累,所以要注意勞逸結(jié)合。只有充沛的精力才能迎接新的挑戰(zhàn),才會(huì)有事半功倍的學(xué)習(xí)。以下是小編給大家整理的高二學(xué)年的數(shù)學(xué)知識(shí)點(diǎn)分析,希望能幫助到你!

高二學(xué)年的數(shù)學(xué)知識(shí)點(diǎn)分析1

1、圓的定義

平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。

2、圓的方程

(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

(2)一般方程

當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為

當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形。

(3)求圓方程的方法:

一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置。

3、直線與圓的位置關(guān)系

直線與圓的位置關(guān)系有相離,相切,相交三種情況:

(1)設(shè)直線,圓,圓心到l的距離為,則有

(2)過圓外一點(diǎn)的切線:

①k不存在,驗(yàn)證是否成立

②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

(3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圓與圓的位置關(guān)系

通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

設(shè)圓

兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;

當(dāng)時(shí)兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;

當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓。

注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線

圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)

高二學(xué)年的數(shù)學(xué)知識(shí)點(diǎn)分析2

一、事件

1.在條件SS的必然事件.

2.在條件S下,一定不會(huì)發(fā)生的事件,叫做相對(duì)于條件S的不可能事件.

3.在條件SS的隨機(jī)事件.

二、概率和頻率

1.用概率度量隨機(jī)事件發(fā)生的可能性大小能為我們決策提供關(guān)鍵性依據(jù).

2.在相同條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA

nA為事件A出現(xiàn)的頻數(shù),稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的頻率.

3.對(duì)于給定的隨機(jī)事件A,由于事件A發(fā)生的頻率fn(A)P(A),P(A).

三、事件的關(guān)系與運(yùn)算

四、概率的幾個(gè)基本性質(zhì)

1.概率的取值范圍:

2.必然事件的概率P(E)=3.不可能事件的概率P(F)=

4.概率的加法公式:

如果事件A與事件B互斥,則P(AB)=P(A)+P(B).

5.對(duì)立事件的概率:

若事件A與事件B互為對(duì)立事件,則AB為必然事件.P(AB)=1,P(A)=1-P(B).

高二學(xué)年的數(shù)學(xué)知識(shí)點(diǎn)分析3

零向量與任何向量共線。非零向量共線條件是b=λa,其中a≠0,λ是實(shí)數(shù)。共線向量也就是平行向量,方向相同或相反的非零向量叫平行向量,任意一組平行向量都可移到同一直線上,所以稱為共線向量。

平面向量共線的條件

零向量與任何向量共線

以下考慮非零向量,三個(gè)方法

(1)方向相同或相反

(2)向量a=k向量b

(3)a=(x1,y1),b=(x2,y2)

a//b等價(jià)于x1y2-x2y1=0

共線向量基本定理

如果a≠0,那么向量b與a共線的充要條件是:存在實(shí)數(shù)λ,使得b=λa。

證明:

(1)充分性:對(duì)于向量a(a≠0)、b,如果有一個(gè)實(shí)數(shù)λ,使b=λa,那么由實(shí)數(shù)與向量的積的定義知,向量a與b共線。

(2)必要性:已知向量a與b共線,a≠0,且向量b的長(zhǎng)度是向量a的長(zhǎng)度的m倍,即∣b∣=m∣a∣。那么當(dāng)向量a與b同方向時(shí),令λ=m,有b=λa,當(dāng)向量a與b反方向時(shí),令λ=-m,有b=λa。如果b=0,那么λ=0。

(3)性:如果b=λa=μa,那么(λ-μ)a=0。但因a≠0,所以λ=μ。

高二學(xué)年的數(shù)學(xué)知識(shí)點(diǎn)分析相關(guān)文章

高二數(shù)學(xué)知識(shí)點(diǎn)2020總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)及公式2020

高二數(shù)學(xué)知識(shí)點(diǎn)最新歸納

高二數(shù)學(xué)知識(shí)點(diǎn)新總結(jié)2020

高二數(shù)學(xué)知識(shí)點(diǎn)整理

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

高二數(shù)學(xué)知識(shí)點(diǎn)小結(jié)

高二學(xué)年的數(shù)學(xué)知識(shí)點(diǎn)分析

在學(xué)習(xí)新知識(shí)的同時(shí)還要復(fù)習(xí)以前的舊知識(shí),肯定會(huì)累,所以要注意勞逸結(jié)合。只有充沛的精力才能迎接新的挑戰(zhàn),才會(huì)有事半功倍的學(xué)習(xí)。以下是小編給大家整理的高二學(xué)年的數(shù)學(xué)知識(shí)點(diǎn)分析,希望能幫助到你!高二學(xué)年的數(shù)
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

精選文章

  • 高二數(shù)學(xué)必修復(fù)習(xí)知識(shí)點(diǎn)總結(jié)
    高二數(shù)學(xué)必修復(fù)習(xí)知識(shí)點(diǎn)總結(jié)

    在高中的學(xué)習(xí)中我們要做到生活上要自理,管理上要自治,思想上要自我教育,學(xué)習(xí)上要求高度自覺。尤其是學(xué)習(xí)的內(nèi)容、方法和要求上,要進(jìn)行更大規(guī)模

  • 與高二數(shù)學(xué)必修五的相關(guān)知識(shí)點(diǎn)
    與高二數(shù)學(xué)必修五的相關(guān)知識(shí)點(diǎn)

    我們要學(xué)會(huì)獨(dú)立地支配學(xué)習(xí)時(shí)間,自覺地、主動(dòng)地、生動(dòng)活潑地學(xué)習(xí),還要注意思維能力、創(chuàng)造能力、組織管理能力、表達(dá)能力的培養(yǎng),為將來適應(yīng)社會(huì)工

  • 高二數(shù)學(xué)必修五教學(xué)知識(shí)點(diǎn)
    高二數(shù)學(xué)必修五教學(xué)知識(shí)點(diǎn)

    人是在失敗中長(zhǎng)大,每一個(gè)名人背后都有不為人知的故事寒窗苦的讀圣賢書,既然我們沒在哪社會(huì)而感到高興,既然古人為我們創(chuàng)造知識(shí)何必不去珍惜古人

  • 高中高二的數(shù)學(xué)知識(shí)點(diǎn)
    高中高二的數(shù)學(xué)知識(shí)點(diǎn)

    每天,對(duì)我們來說,是一個(gè)挑戰(zhàn),是一個(gè)新的開始,是昨天的結(jié)束。每一天,我們?cè)谂Γ趯W(xué)習(xí)。但是當(dāng)那一次次殘忍的考試打擊者我們,我們又失去斗

1070386