高二數(shù)學(xué)必修五教學(xué)知識(shí)點(diǎn)
人是在失敗中長(zhǎng)大,每一個(gè)名人背后都有不為人知的故事寒窗苦的讀圣賢書(shū),既然我們沒(méi)在哪社會(huì)而感到高興,既然古人為我們創(chuàng)造知識(shí)何必不去珍惜古人的汗水。下面是小編給大家?guī)?lái)的高二數(shù)學(xué)必修五教學(xué)知識(shí)點(diǎn),希望能幫助到你!
高二數(shù)學(xué)必修五教學(xué)知識(shí)點(diǎn)1
函數(shù)的單調(diào)性、奇偶性、周期性
單調(diào)性:定義:注意定義是相對(duì)與某個(gè)具體的區(qū)間而言。
判定方法有:定義法(作差比較和作商比較)
導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))
復(fù)合函數(shù)法和圖像法。
應(yīng)用:比較大小,證明不等式,解不等式。
奇偶性:
定義:注意區(qū)間是否關(guān)于原點(diǎn)對(duì)稱(chēng),比較f(_)與f(-_)的關(guān)系。f(_)-f(-_)=0f(_)=f(-_)f(_)為偶函數(shù);
f(_)+f(-_)=0f(_)=-f(-_)f(_)為奇函數(shù)。
判別方法:定義法,圖像法,復(fù)合函數(shù)法
應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。
周期性:定義:若函數(shù)f(_)對(duì)定義域內(nèi)的任意_滿足:f(_+T)=f(_),則T為函數(shù)f(_)的周期。
其他:若函數(shù)f(_)對(duì)定義域內(nèi)的任意_滿足:f(_+a)=f(_-a),則2a為函數(shù)f(_)的周期.
應(yīng)用:求函數(shù)值和某個(gè)區(qū)間上的函數(shù)解析式。
四、圖形變換:函數(shù)圖像變換:(重點(diǎn))要求掌握常見(jiàn)基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。
常見(jiàn)圖像變化規(guī)律:(注意平移變化能夠用向量的語(yǔ)言解釋?zhuān)桶聪蛄科揭坡?lián)系起來(lái)思考)
平移變換y=f(_)→y=f(_+a),y=f(_)+b
注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2_)經(jīng)過(guò)平移得到函數(shù)y=f(2_+4)的圖象。
(ⅱ)會(huì)結(jié)合向量的平移,理解按照向量(m,n)平移的意義。
對(duì)稱(chēng)變換y=f(_)→y=f(-_),關(guān)于y軸對(duì)稱(chēng)
y=f(_)→y=-f(_),關(guān)于_軸對(duì)稱(chēng)
y=f(_)→y=f|_|,把_軸上方的圖象保留,_軸下方的圖象關(guān)于_軸對(duì)稱(chēng)
y=f(_)→y=|f(_)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對(duì)稱(chēng)。(注意:它是一個(gè)偶函數(shù))
伸縮變換:y=f(_)→y=f(ω_),
y=f(_)→y=Af(ω_+φ)具體參照三角函數(shù)的圖象變換。
一個(gè)重要結(jié)論:若f(a-_)=f(a+_),則函數(shù)y=f(_)的圖像關(guān)于直線_=a對(duì)稱(chēng);
高二數(shù)學(xué)必修五教學(xué)知識(shí)點(diǎn)2
一、集合、簡(jiǎn)易邏輯(14課時(shí),8個(gè))
1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件。
二、函數(shù)(30課時(shí),12個(gè))
1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對(duì)數(shù);10.對(duì)數(shù)的運(yùn)算性質(zhì);11.對(duì)數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例。
三、數(shù)列(12課時(shí),5個(gè))
1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式。
四、三角函數(shù)(46課時(shí),17個(gè))
1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。
五、平面向量(12課時(shí),8個(gè))
1.向量;2.向量的加法與減法;3.實(shí)數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點(diǎn);6.平面向量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移。
六、不等式(22課時(shí),5個(gè))
1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對(duì)值的不等式。
七、直線和圓的方程(22課時(shí),12個(gè))
1.直線的傾斜角和斜率;2.直線方程的點(diǎn)斜式和兩點(diǎn)式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點(diǎn)到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡(jiǎn)單線性規(guī)劃問(wèn)題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程。
八、圓錐曲線(18課時(shí),7個(gè))
1.橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡(jiǎn)單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡(jiǎn)單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡(jiǎn)單幾何性質(zhì)。
九、直線、平面、簡(jiǎn)單何體(36課時(shí),28個(gè))
1.平面及基本性質(zhì);2.平面圖形直觀圖的畫(huà)法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5.直線和平面垂直的判定與性質(zhì);6.三垂線定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。
十、排列、組合、二項(xiàng)式定理(18課時(shí),8個(gè))
1.分類(lèi)計(jì)數(shù)原理與分步計(jì)數(shù)原理;2.排列;3.排列數(shù)公式;4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個(gè)性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)展開(kāi)式的性質(zhì)。
十一、概率(12課時(shí),5個(gè))
1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個(gè)發(fā)生的概率;4.相互獨(dú)立事件同時(shí)發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn)。
選修Ⅱ(24個(gè))
十二、概率與統(tǒng)計(jì)(14課時(shí),6個(gè))
1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣方法;4.總體分布的估計(jì);5.正態(tài)分布;6.線性回歸。
十三、極限(12課時(shí),6個(gè))
1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運(yùn)算;6.函數(shù)的連續(xù)性。
十四、導(dǎo)數(shù)(18課時(shí),8個(gè))
1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見(jiàn)函數(shù)的導(dǎo)數(shù);4.兩個(gè)函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8.函數(shù)的值和最小值。
十五、復(fù)數(shù)(4課時(shí),4個(gè))
1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法;4.復(fù)數(shù)的一元二次方程和二項(xiàng)方程的解法。
高二數(shù)學(xué)必修五教學(xué)知識(shí)點(diǎn)3
考點(diǎn)一:求導(dǎo)公式。
例1.f(_)是f(_)13_2_1的導(dǎo)函數(shù),則f(1)的值是3
考點(diǎn)二:導(dǎo)數(shù)的幾何意義。
例2.已知函數(shù)yf(_)的圖象在點(diǎn)M(1,f(1))處的切線方程是y
1_2,則f(1)f(1)2
,3)處的切線方程是例3.曲線y_32_24_2在點(diǎn)(1
點(diǎn)評(píng):以上兩小題均是對(duì)導(dǎo)數(shù)的幾何意義的考查。
考點(diǎn)三:導(dǎo)數(shù)的幾何意義的應(yīng)用。
例4.已知曲線C:y_33_22_,直線l:yk_,且直線l與曲線C相切于點(diǎn)_0,y0_00,求直線l的方程及切點(diǎn)坐標(biāo)。
點(diǎn)評(píng):本小題考查導(dǎo)數(shù)幾何意義的應(yīng)用。解決此類(lèi)問(wèn)題時(shí)應(yīng)注意“切點(diǎn)既在曲線上又在切線上”這個(gè)條件的應(yīng)用。函數(shù)在某點(diǎn)可導(dǎo)是相應(yīng)曲線上過(guò)該點(diǎn)存在切線的充分條件,而不是必要條件。
考點(diǎn)四:函數(shù)的單調(diào)性。
例5.已知f_a_3__1在R上是減函數(shù),求a的取值范圍。32
點(diǎn)評(píng):本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用。對(duì)于高次函數(shù)單調(diào)性問(wèn)題,要有求導(dǎo)意識(shí)。
考點(diǎn)五:函數(shù)的極值。
例6.設(shè)函數(shù)f(_)2_33a_23b_8c在_1及_2時(shí)取得極值。
(1)求a、b的值;
(2)若對(duì)于任意的_[0,3],都有f(_)c2成立,求c的取值范圍。
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)求函數(shù)的極值。求可導(dǎo)函數(shù)f_的極值步驟:
①求導(dǎo)數(shù)f'_;
②求f'_0的根;③將f'_0的根在數(shù)軸上標(biāo)出,得出單調(diào)區(qū)間,由f'_在各區(qū)間上取值的正負(fù)可確定并求出函數(shù)f_的極值。
考點(diǎn)六:函數(shù)的最值。
例7.已知a為實(shí)數(shù),f__24_a。求導(dǎo)數(shù)f'_;(2)若f'10,求f_在區(qū)間2,2上的值和最小值。
點(diǎn)評(píng):本題考查可導(dǎo)函數(shù)最值的求法。求可導(dǎo)函數(shù)f_在區(qū)間a,b上的最值,要先求出函數(shù)f_在區(qū)間a,b上的極值,然后與fa和fb進(jìn)行比較,從而得出函數(shù)的最小值。
考點(diǎn)七:導(dǎo)數(shù)的綜合性問(wèn)題。
例8.設(shè)函數(shù)f(_)a_3b_c(a0)為奇函數(shù),其圖象在點(diǎn)(1,f(1))處的切線與直線_6y70垂直,導(dǎo)函數(shù)
(1)求a,b,c的值;f'(_)的最小值為12。
(2)求函數(shù)f(_)的單調(diào)遞增區(qū)間,并求函數(shù)f(_)在[1,3]上的值和最小值。
點(diǎn)評(píng):本題考查函數(shù)的奇偶性、單調(diào)性、二次函數(shù)的最值、導(dǎo)數(shù)的應(yīng)用等基礎(chǔ)知識(shí),以及推理能力和運(yùn)算能力。
高二數(shù)學(xué)必修五教學(xué)知識(shí)點(diǎn)相關(guān)文章:
★ 高二數(shù)學(xué)必修5知識(shí)點(diǎn)總結(jié)
★ 高二數(shù)學(xué)必修五知識(shí)點(diǎn)
★ 高二數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)
★ 高中數(shù)學(xué)必修5數(shù)列知識(shí)點(diǎn)總結(jié)
★ 高二數(shù)學(xué)必修5等差數(shù)列知識(shí)點(diǎn)
★ 必修五數(shù)學(xué)知識(shí)點(diǎn)
★ 高二數(shù)學(xué)必修5數(shù)列知識(shí)點(diǎn)