學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)>

高二數(shù)學(xué)必掌握的重點知識點

時間: 贊銳0 分享

可以說,學(xué)習(xí)目標(biāo)是你學(xué)習(xí)的旗幟和方向,學(xué)習(xí)目標(biāo)越高,學(xué)習(xí)動力就會越大,但是一旦學(xué)習(xí)目標(biāo)沒有達到,所遭受的打擊也會越大;以下是小編給大家整理的高二數(shù)學(xué)必掌握的重點知識點,希望能助你一臂之力!

高二數(shù)學(xué)必掌握的重點知識點1

一、變量間的相關(guān)關(guān)系

1.常見的兩變量之間的關(guān)系有兩類:一類是函數(shù)關(guān)系,另一類是相關(guān)關(guān)系;與函數(shù)關(guān)系不同,相關(guān)關(guān)系是一種非確定性關(guān)系.

2.從散點圖上看,點分布在從左下角到右上角的區(qū)域內(nèi),兩個變量的這種相關(guān)關(guān)系稱為正相關(guān),點分布在左上角到右下角的區(qū)域內(nèi),兩個變量的相關(guān)關(guān)系為負相關(guān).

二、兩個變量的線性相關(guān)

1.從散點圖上看,如果這些點從整體上看大致分布在通過散點圖中心的一條直線附近,稱兩個變量之間具有線性相關(guān)關(guān)系,這條直線叫回歸直線.

當(dāng)r>0時,表明兩個變量正相關(guān);

當(dāng)r<0時,表明兩個變量負相關(guān).

r的絕對值越接近于1,表明兩個變量的線性相關(guān)性越強.r的絕對值越接近于0時,表明兩個變量之間幾乎不存在線性相關(guān)關(guān)系.通常|r|大于0.75時,認為兩個變量有很強的線性相關(guān)性.

三、解題方法

1.相關(guān)關(guān)系的判斷方法一是利用散點圖直觀判斷,二是利用相關(guān)系數(shù)作出判斷.

2.對于由散點圖作出相關(guān)性判斷時,若散點圖呈帶狀且區(qū)域較窄,說明兩個變量有一定的線性相關(guān)性,若呈曲線型也是有相關(guān)性.

3.由相關(guān)系數(shù)r判斷時|r|越趨近于1相關(guān)性越強.

高二數(shù)學(xué)必掌握的重點知識點2

在中國古代把數(shù)學(xué)叫算術(shù),又稱算學(xué),最后才改為數(shù)學(xué)。

1.任意角

(1)角的分類:

①按旋轉(zhuǎn)方向不同分為正角、負角、零角.

②按終邊位置不同分為象限角和軸線角.

(2)終邊相同的角:

終邊與角相同的角可寫成+k360(kZ).

(3)弧度制:

①1弧度的角:把長度等于半徑長的弧所對的圓心角叫做1弧度的角.

②規(guī)定:正角的弧度數(shù)為正數(shù),負角的弧度數(shù)為負數(shù),零角的弧度數(shù)為零,||=,l是以角作為圓心角時所對圓弧的長,r為半徑.

③用弧度做單位來度量角的制度叫做弧度制.比值與所取的r的大小無關(guān),僅與角的大小有關(guān).

④弧度與角度的換算:360弧度;180弧度.

⑤弧長公式:l=||r,扇形面積公式:S扇形=lr=||r2.

2.任意角的三角函數(shù)

(1)任意角的三角函數(shù)定義:

設(shè)是一個任意角,角的終邊與單位圓交于點P(x,y),那么角的正弦、余弦、正切分別是:sin=y,cos=x,tan=,它們都是以角為自變量,以單位圓上點的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù).

(2)三角函數(shù)在各象限內(nèi)的符號口訣是:一全正、二正弦、三正切、四余弦.

3.三角函數(shù)線

設(shè)角的頂點在坐標(biāo)原點,始邊與x軸非負半軸重合,終邊與單位圓相交于點P,過P作PM垂直于x軸于M.由三角函數(shù)的定義知,點P的坐標(biāo)為(cos_,sin_),即P(cos_,sin_),其中cos=OM,sin=MP,單位圓與x軸的正半軸交于點A,單位圓在A點的切線與的終邊或其反向延長線相交于點T,則tan=AT.我們把有向線段OM、MP、AT叫做的余弦線、正弦線、正切線.

高二數(shù)學(xué)必掌握的重點知識點3

1.求函數(shù)的單調(diào)性:

利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。

利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。

反過來,也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),

(1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

(2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

(3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。

2.求函數(shù)的極值:

設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)。

可導(dǎo)函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:

(1)確定函數(shù)f(x)的定義域;(2)求導(dǎo)數(shù)f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區(qū)間,并列表:x變化時,f(x)和f(x)值的變化情況:

(4)檢查f(x)的符號并由表格判斷極值。

3.求函數(shù)的值與最小值:

如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的值。函數(shù)在定義域內(nèi)的極值不一定,但在定義域內(nèi)的最值是的。

求函數(shù)f(x)在區(qū)間[a,b]上的值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;

(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的值與最小值。

4.解決不等式的有關(guān)問題:

(1)不等式恒成立問題(絕對不等式問題)可考慮值域。

f(x)(xA)的值域是[a,b]時,

不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

不等式f(x)0恒成立的充要條件是f(x)min0,即a0。

f(x)(xA)的值域是(a,b)時,

不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。

(2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。

5.導(dǎo)數(shù)在實際生活中的應(yīng)用:

實際生活求解(小)值問題,通常都可轉(zhuǎn)化為函數(shù)的最值.在利用導(dǎo)數(shù)來求函數(shù)最值時,一定要注意,極值點的單峰函數(shù),極值點就是最值點,在解題時要加以說明。

高二數(shù)學(xué)必掌握的重點知識點相關(guān)文章

高二數(shù)學(xué)必背知識點總結(jié)

高二數(shù)學(xué)考試必考知識點

高二數(shù)學(xué)知識點總結(jié)

高二數(shù)學(xué)知識點歸納總結(jié)

高二數(shù)學(xué)知識點2020總結(jié)

高二數(shù)學(xué)考點知識點總結(jié)復(fù)習(xí)大綱

高二數(shù)學(xué)知識點歸納

高二數(shù)學(xué)上下學(xué)期知識點復(fù)習(xí)提綱

高二數(shù)學(xué)知識點總結(jié)歸納

高二數(shù)學(xué)知識點總結(jié)人教版

1071228