學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)>

高二數(shù)學(xué)知識(shí)點(diǎn)歸納

時(shí)間: 維維0 分享

只有高效的學(xué)習(xí)方法,才可以很快的掌握知識(shí)的重難點(diǎn)。有效的讀書(shū)方式根據(jù)規(guī)律掌握方法,不要一來(lái)就死記硬背,先找規(guī)律,再記憶,然后再學(xué)習(xí),就能很快的掌握知識(shí)。下面是小編給大家整理的高二數(shù)學(xué)知識(shí)點(diǎn),希望對(duì)大家有所幫助。

高二數(shù)學(xué)知識(shí)點(diǎn)1

1.求導(dǎo)法則:

(c)/=0這里c是常數(shù)。即常數(shù)的導(dǎo)數(shù)值為0。

(xn)/=nxn-1特別地:(x)/=1(x-1)/=()/=-x-2(f(x)±g(x))/=f/(x)±g/(x)(k?f(x))/=k?f/(x)

2.導(dǎo)數(shù)的幾何物理意義:

k=f/(x0)表示過(guò)曲線y=f(x)上的點(diǎn)P(x0,f(x0))的切線的斜率。

V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。

3.導(dǎo)數(shù)的應(yīng)用:

①求切線的斜率。

②導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系

已知(1)分析的定義域;(2)求導(dǎo)數(shù)(3)解不等式,解集在定義域內(nèi)的部分為增區(qū)間(4)解不等式,解集在定義域內(nèi)的部分為減區(qū)間。

我們?cè)趹?yīng)用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性時(shí)一定要搞清以下三個(gè)關(guān)系,才能準(zhǔn)確無(wú)誤地判斷函數(shù)的單調(diào)性。以下以增函數(shù)為例作簡(jiǎn)單的分析,前提條件都是函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo)。

③求極值、求最值。

注意:極值≠最值。函數(shù)f(x)在區(qū)間[a,b]上的值為極大值和f(a)、f(b)中的一個(gè)。最小值為極小值和f(a)、f(b)中最小的一個(gè)。

f/(x0)=0不能得到當(dāng)x=x0時(shí),函數(shù)有極值。

但是,當(dāng)x=x0時(shí),函數(shù)有極值f/(x0)=0

判斷極值,還需結(jié)合函數(shù)的單調(diào)性說(shuō)明。

4.導(dǎo)數(shù)的常規(guī)問(wèn)題:

(1)刻畫(huà)函數(shù)(比初等方法精確細(xì)微);

(2)同幾何中切線聯(lián)系(導(dǎo)數(shù)方法可用于研究平面曲線的切線);

(3)應(yīng)用問(wèn)題(初等方法往往技巧性要求較高,而導(dǎo)數(shù)方法顯得簡(jiǎn)便)等關(guān)于次多項(xiàng)式的導(dǎo)數(shù)問(wèn)題屬于較難類(lèi)型。

2.關(guān)于函數(shù)特征,最值問(wèn)題較多,所以有必要專(zhuān)項(xiàng)討論,導(dǎo)數(shù)法求最值要比初等方法快捷簡(jiǎn)便。

3.導(dǎo)數(shù)與解析幾何或函數(shù)圖象的混合問(wèn)題是一種重要類(lèi)型,也是高考中考察綜合能力的一個(gè)方向,應(yīng)引起注意。

九、不等式

一、不等式的基本性質(zhì):

注意:(1)特值法是判斷不等式命題是否成立的一種方法,此法尤其適用于不成立的命題。

(2)注意課本上的幾個(gè)性質(zhì),另外需要特別注意:

①若ab>0,則。即不等式兩邊同號(hào)時(shí),不等式兩邊取倒數(shù),不等號(hào)方向要改變。

②如果對(duì)不等式兩邊同時(shí)乘以一個(gè)代數(shù)式,要注意它的正負(fù)號(hào),如果正負(fù)號(hào)未定,要注意分類(lèi)討論。

③圖象法:利用有關(guān)函數(shù)的圖象(指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、二次函數(shù)、三角函數(shù)的圖象),直接比較大小。

④中介值法:先把要比較的代數(shù)式與“0”比,與“1”比,然后再比較它們的大小

二、均值不等式:兩個(gè)數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。

基本應(yīng)用:①放縮,變形;

②求函數(shù)最值:注意:①一正二定三相等;②積定和最小,和定積。

常用的方法為:拆、湊、平方;

三、絕對(duì)值不等式:

注意:上述等號(hào)“=”成立的條件;

四、常用的基本不等式:

五、證明不等式常用方法:

(1)比較法:作差比較:

作差比較的步驟:

⑴作差:對(duì)要比較大小的兩個(gè)數(shù)(或式)作差。

⑵變形:對(duì)差進(jìn)行因式分解或配方成幾個(gè)數(shù)(或式)的完全平方和。

⑶判斷差的符號(hào):結(jié)合變形的結(jié)果及題設(shè)條件判斷差的符號(hào)。

注意:若兩個(gè)正數(shù)作差比較有困難,可以通過(guò)它們的平方差來(lái)比較大小。

(2)綜合法:由因?qū)Ч?/p>

(3)分析法:執(zhí)果索因?;静襟E:要證……只需證……,只需證……

(4)反證法:正難則反。

(5)放縮法:將不等式一側(cè)適當(dāng)?shù)姆糯蠡蚩s小以達(dá)證題目的。

放縮法的方法有:

⑴添加或舍去一些項(xiàng),

⑵將分子或分母放大(或縮小)

⑶利用基本不等式,

(6)換元法:換元的目的就是減少不等式中變量,以使問(wèn)題化難為易,化繁為簡(jiǎn),常用的換元有三角換元和代數(shù)換元。

(7)構(gòu)造法:通過(guò)構(gòu)造函數(shù)、方程、數(shù)列、向量或不等式來(lái)證明不等式;

十、不等式的解法:

(1)一元二次不等式:一元二次不等式二次項(xiàng)系數(shù)小于零的,同解變形為二次項(xiàng)系數(shù)大于零;注:要對(duì)進(jìn)行討論:

(2)絕對(duì)值不等式:若,則;;

注意:

(1)解有關(guān)絕對(duì)值的問(wèn)題,考慮去絕對(duì)值,去絕對(duì)值的方法有:

⑴對(duì)絕對(duì)值內(nèi)的部分按大于、等于、小于零進(jìn)行討論去絕對(duì)值;

(2).通過(guò)兩邊平方去絕對(duì)值;需要注意的是不等號(hào)兩邊為非負(fù)值。

(3).含有多個(gè)絕對(duì)值符號(hào)的不等式可用“按零點(diǎn)分區(qū)間討論”的方法來(lái)解。

(4)分式不等式的解法:通解變形為整式不等式;

(5)不等式組的解法:分別求出不等式組中,每個(gè)不等式的解集,然后求其交集,即是這個(gè)不等式組的解集,在求交集中,通常把每個(gè)不等式的解集畫(huà)在同一條數(shù)軸上,取它們的公共部分。

(6)解含有參數(shù)的不等式:

解含參數(shù)的不等式時(shí),首先應(yīng)注意考察是否需要進(jìn)行分類(lèi)討論.如果遇到下述情況則一般需要討論:

①不等式兩端乘除一個(gè)含參數(shù)的式子時(shí),則需討論這個(gè)式子的正、負(fù)、零性.

②在求解過(guò)程中,需要使用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性時(shí),則需對(duì)它們的底數(shù)進(jìn)行討論.

③在解含有字母的一元二次不等式時(shí),需要考慮相應(yīng)的二次函數(shù)的開(kāi)口方向,對(duì)應(yīng)的一元二次方程根的狀況(有時(shí)要分析△),比較兩個(gè)根的大小,設(shè)根為(或更多)但含參數(shù),要討論。

高二數(shù)學(xué)知識(shí)點(diǎn)2

函數(shù)的單調(diào)性、奇偶性、周期性

單調(diào)性:定義:注意定義是相對(duì)與某個(gè)具體的區(qū)間而言。

判定方法有:定義法(作差比較和作商比較)

導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))

復(fù)合函數(shù)法和圖像法。

應(yīng)用:比較大小,證明不等式,解不等式。

奇偶性:

定義:注意區(qū)間是否關(guān)于原點(diǎn)對(duì)稱(chēng),比較f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);

f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。

判別方法:定義法,圖像法,復(fù)合函數(shù)法

應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。

周期性:定義:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。

其他:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.

應(yīng)用:求函數(shù)值和某個(gè)區(qū)間上的函數(shù)解析式。

四、圖形變換:函數(shù)圖像變換:(重點(diǎn))要求掌握常見(jiàn)基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。

常見(jiàn)圖像變化規(guī)律:(注意平移變化能夠用向量的語(yǔ)言解釋?zhuān)桶聪蛄科揭坡?lián)系起來(lái)思考)

平移變換y=f(x)→y=f(x+a),y=f(x)+b

注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過(guò)平移得到函數(shù)y=f(2x+4)的圖象。

(ⅱ)會(huì)結(jié)合向量的平移,理解按照向量(m,n)平移的意義。

對(duì)稱(chēng)變換y=f(x)→y=f(-x),關(guān)于y軸對(duì)稱(chēng)

y=f(x)→y=-f(x),關(guān)于x軸對(duì)稱(chēng)

y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對(duì)稱(chēng)

y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對(duì)稱(chēng)。(注意:它是一個(gè)偶函數(shù))

伸縮變換:y=f(x)→y=f(ωx),

y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。

一個(gè)重要結(jié)論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關(guān)于直線x=a對(duì)稱(chēng);

高二數(shù)學(xué)知識(shí)點(diǎn)3

1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑.

2、圓的方程

(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

(2)一般方程

當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為

當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形.

(3)求圓方程的方法:

一般都采用待定系數(shù)法:先設(shè)后求.確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置.

3、高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié):直線與圓的位置關(guān)系:

直線與圓的位置關(guān)系有相離,相切,相交三種情況:

(1)設(shè)直線,圓,圓心到l的距離為,則有;;

(2)過(guò)圓外一點(diǎn)的切線:k不存在,驗(yàn)證是否成立k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

(3)過(guò)圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定.

設(shè)圓,

兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定.

當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;

當(dāng)時(shí)兩圓外切,連心線過(guò)切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過(guò)切點(diǎn),只有一條公切線;

當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓.

注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線

5、空間點(diǎn)、直線、平面的位置關(guān)系

公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi).

應(yīng)用:判斷直線是否在平面內(nèi)

用符號(hào)語(yǔ)言表示公理1:

公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線

符號(hào):平面α和β相交,交線是a,記作α∩β=a.

符號(hào)語(yǔ)言:

公理2的作用:

它是判定兩個(gè)平面相交的方法.

它說(shuō)明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線公共點(diǎn).

它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù).

公理3:經(jīng)過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面.

推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.

公理3及其推論作用:它是空間內(nèi)確定平面的依據(jù)它是證明平面重合的依據(jù)

公理4:平行于同一條直線的兩條直線互相平行

高二數(shù)學(xué)知識(shí)點(diǎn)歸納相關(guān)文章

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高二數(shù)學(xué)推理知識(shí)點(diǎn)大總結(jié)

高二數(shù)學(xué)上下學(xué)期知識(shí)點(diǎn)復(fù)習(xí)提綱

高二數(shù)學(xué)重要知識(shí)點(diǎn)歸納

高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)最新歸納

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

高二數(shù)學(xué)知識(shí)點(diǎn)歸納小總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)整理

高二數(shù)學(xué)知識(shí)點(diǎn)歸納

只有高效的學(xué)習(xí)方法,才可以很快的掌握知識(shí)的重難點(diǎn)。有效的讀書(shū)方式根據(jù)規(guī)律掌握方法,不要一來(lái)就死記硬背,先找規(guī)律,再記憶,然后再學(xué)習(xí),就能很快的掌握知識(shí)。下面是小編給大家整理的高二數(shù)學(xué)知識(shí)點(diǎn),希望對(duì)大家
推薦度:
點(diǎn)擊下載文檔文檔為doc格式
788943