學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)>

高二數(shù)學(xué)選修一重要知識點分析

時間: 贊銳0 分享

數(shù)學(xué)習(xí)題無非就是數(shù)學(xué)概念和數(shù)學(xué)思想的組合應(yīng)用,弄清數(shù)學(xué)基本概念、基本定理、基本方法是判斷題目類型、知識范圍的前提,是正確把握解題方法的依據(jù)。以下是小編給大家整理的高二數(shù)學(xué)選修一重要知識點分析,希望大家能夠喜歡!

高二數(shù)學(xué)選修一重要知識點分析1

1、圓的定義

平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

2、圓的方程

(x-a)^2+(y-b)^2=r^2

(1)標(biāo)準(zhǔn)方程,圓心(a,b),半徑為r;

(2)求圓方程的方法:

一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨立條件,若利用圓的標(biāo)準(zhǔn)方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。

3、直線與圓的位置關(guān)系

直線與圓的位置關(guān)系有相離,相切,相交三種情況:

(1)設(shè)直線,圓,圓心到l的距離為,則有;;

(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設(shè)點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

練習(xí)題:

2.若圓(x-a)2+(y-b)2=r2過原點,則()

A.a2-b2=0B.a2+b2=r2

C.a2+b2+r2=0D.a=0,b=0

【解析】選B.因為圓過原點,所以(0,0)滿足方程,

即(0-a)2+(0-b)2=r2,

所以a2+b2=r2.

高二數(shù)學(xué)選修一重要知識點分析2

一、隨機事件

主要掌握好(三四五)

(1)事件的三種運算:并(和)、交(積)、差;注意差A(yù)-B可以表示成A與B的逆的積。

(2)四種運算律:交換律、結(jié)合律、分配律、德莫根律。

(3)事件的五種關(guān)系:包含、相等、互斥(互不相容)、對立、相互獨立。

二、概率定義

(1)統(tǒng)計定義:頻率穩(wěn)定在一個數(shù)附近,這個數(shù)稱為事件的概率;(2)古典定義:要求樣本空間只有有限個基本事件,每個基本事件出現(xiàn)的可能性相等,則事件A所含基本事件個數(shù)與樣本空間所含基本事件個數(shù)的比稱為事件的古典概率;

(3)幾何概率:樣本空間中的元素有無窮多個,每個元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個幾何圖形,事件A看成這個圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計算;

(4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。

三、概率性質(zhì)與公式

(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);

(2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);

(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);

(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

如果一個事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.

(5)二項概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當(dāng)一個問題可以看成n重貝努力試驗(三個條件:n次重復(fù),每次只有A與A的逆可能發(fā)生,各次試驗結(jié)果相互獨立)時,要考慮二項概率公式.

高二數(shù)學(xué)選修一重要知識點分析3

導(dǎo)數(shù)是微積分中的重要基礎(chǔ)概念。當(dāng)函數(shù)y=f(x)的自變量x在一點x0上產(chǎn)生一個增量Δx時,函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導(dǎo)數(shù),記作f'(x0)或df(x0)/dx。

導(dǎo)數(shù)是函數(shù)的局部性質(zhì)。一個函數(shù)在某一點的導(dǎo)數(shù)描述了這個函數(shù)在這一點附近的變化率。如果函數(shù)的自變量和取值都是實數(shù)的話,函數(shù)在某一點的導(dǎo)數(shù)就是該函數(shù)所代表的曲線在這一點上的切線斜率。導(dǎo)數(shù)的本質(zhì)是通過極限的概念對函數(shù)進行局部的線性逼近。例如在運動學(xué)中,物體的位移對于時間的導(dǎo)數(shù)就是物體的瞬時速度。

不是所有的函數(shù)都有導(dǎo)數(shù),一個函數(shù)也不一定在所有的點上都有導(dǎo)數(shù)。若某函數(shù)在某一點導(dǎo)數(shù)存在,則稱其在這一點可導(dǎo),否則稱為不可導(dǎo)。然而,可導(dǎo)的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導(dǎo)。

對于可導(dǎo)的函數(shù)f(x),x?f'(x)也是一個函數(shù),稱作f(x)的導(dǎo)函數(shù)。尋找已知的函數(shù)在某點的導(dǎo)數(shù)或其導(dǎo)函數(shù)的過程稱為求導(dǎo)。實質(zhì)上,求導(dǎo)就是一個求極限的過程,導(dǎo)數(shù)的四則運算法則也來源于極限的四則運算法則。反之,已知導(dǎo)函數(shù)也可以倒過來求原來的函數(shù),即不定積分。微積分基本定理說明了求原函數(shù)與積分是等價的。求導(dǎo)和積分是一對互逆的操作,它們都是微積分學(xué)中最為基礎(chǔ)的概念。

高二數(shù)學(xué)選修一重要知識點分析相關(guān)文章

高二數(shù)學(xué)知識點總結(jié)選修2

高二數(shù)學(xué)選修1-1圓錐曲線知識點

高二數(shù)學(xué)考點知識點總結(jié)復(fù)習(xí)大綱

高二數(shù)學(xué)知識點歸納總結(jié)

高二數(shù)學(xué)選修2—1第一章常用邏輯用語知識點復(fù)習(xí)

高二數(shù)學(xué)學(xué)習(xí)方法指導(dǎo)與學(xué)習(xí)方法總結(jié)

高二數(shù)學(xué)選修2-1拋物線知識點總結(jié)

高二數(shù)學(xué)知識點總結(jié)(人教版)

高二數(shù)學(xué)知識點總結(jié)人教版

高中數(shù)學(xué)知識點總結(jié)

1071309