學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)>

2022高二數(shù)學(xué)期中知識(shí)點(diǎn)

時(shí)間: 躍瀚1373 分享

知識(shí)是取之不盡,用之不竭的。只有限度地挖掘它,才能體會(huì)到學(xué)習(xí)的樂趣。任何一門學(xué)科的知識(shí)都需要大量的記憶和練習(xí)來鞏固。雖然辛苦,但也伴隨著快樂!下面是小編給大家整理的高二數(shù)學(xué)知識(shí)點(diǎn),希望對(duì)大家有所幫助。

二年級(jí)數(shù)學(xué)必修三知識(shí)點(diǎn)

古典概型

(1)古典概型的使用條件:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。

(2)古典概型的解題步驟;

①求出總的基本事件數(shù);

②求出事件A所包含的基本事件數(shù),然后利用公式P(A)=A包含的基本事件數(shù)

總的基本事件個(gè)數(shù)

(3)轉(zhuǎn)化的思想:常見的古典概率模型:拋硬幣、擲骰子、摸小球(學(xué)會(huì)編號(hào))、抽產(chǎn)品等等,很多概率模型可以轉(zhuǎn)化歸結(jié)為以上的模型。

(4)若是無放回抽樣,則可以不帶順序

若是有放回抽樣,則應(yīng)帶順序,可以參考擲骰子兩次的模型。

高二年級(jí)數(shù)學(xué)必修一重要知識(shí)點(diǎn)

1.計(jì)數(shù)原理知識(shí)點(diǎn)

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分類)

2.排列(有序)與組合(無序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

3.排列組合混合題的解題原則:先選后排,先分再排

排列組合題的主要解題方法:優(yōu)先法:以元素為主,應(yīng)先滿足特殊元素的要求,再考慮其他元素.以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置.

_法(集團(tuán)元素法,把某些必須在一起的元素視為一個(gè)整體考慮)

插空法(解決相間問題)間接法和去雜法等等

在求解排列與組合應(yīng)用問題時(shí),應(yīng)注意:

(1)把具體問題轉(zhuǎn)化或歸結(jié)為排列或組合問題;

(2)通過分析確定運(yùn)用分類計(jì)數(shù)原理還是分步計(jì)數(shù)原理;

(3)分析題目條件,避免“選取”時(shí)重復(fù)和遺漏;

(4)列出式子計(jì)算和作答.

經(jīng)常運(yùn)用的數(shù)學(xué)思想是:

①分類討論思想;②轉(zhuǎn)化思想;③對(duì)稱思想.

4.二項(xiàng)式定理知識(shí)點(diǎn):

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性質(zhì)和主要結(jié)論:對(duì)稱性Cnm=Cnn-m

二項(xiàng)式系數(shù)在中間。(要注意n為奇數(shù)還是偶數(shù),答案是中間一項(xiàng)還是中間兩項(xiàng))

所有二項(xiàng)式系數(shù)的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇數(shù)項(xiàng)二項(xiàng)式系數(shù)的和=偶數(shù)項(xiàng)而是系數(shù)的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通項(xiàng)為第r+1項(xiàng):Tr+1=Cnran-rbr作用:處理與指定項(xiàng)、特定項(xiàng)、常數(shù)項(xiàng)、有理項(xiàng)等有關(guān)問題。

5.二項(xiàng)式定理的應(yīng)用:解決有關(guān)近似計(jì)算、整除問題,運(yùn)用二項(xiàng)展開式定理并且結(jié)合放縮法證明與指數(shù)有關(guān)的不等式。

6.注意二項(xiàng)式系數(shù)與項(xiàng)的系數(shù)(字母項(xiàng)的系數(shù),指定項(xiàng)的系數(shù)等,指運(yùn)算結(jié)果的系數(shù))的區(qū)別,在求某幾項(xiàng)的系數(shù)的和時(shí)注意賦值法的應(yīng)用。

高二數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)總結(jié)

1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑.

2、圓的方程

(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

(2)一般方程

當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為

當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形.

(3)求圓方程的方法:

一般都采用待定系數(shù)法:先設(shè)后求.確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置.

3、高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié):直線與圓的位置關(guān)系:

直線與圓的位置關(guān)系有相離,相切,相交三種情況:

(1)設(shè)直線,圓,圓心到l的距離為,則有;;

(2)過圓外一點(diǎn)的切線:k不存在,驗(yàn)證是否成立k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

(3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

設(shè)圓,

兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;

當(dāng)時(shí)兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;

當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓.

注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線

5、空間點(diǎn)、直線、平面的位置關(guān)系

公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi).

應(yīng)用:判斷直線是否在平面內(nèi)

用符號(hào)語(yǔ)言表示公理1:

公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線

符號(hào):平面α和β相交,交線是a,記作α∩β=a.

2022高二數(shù)學(xué)期中知識(shí)點(diǎn)相關(guān)文章

2022高一必修二數(shù)學(xué)知識(shí)點(diǎn)歸納

2022年期中總結(jié)與反思(精選10篇)

2022期中學(xué)習(xí)總結(jié)通用5篇

高二數(shù)學(xué)下冊(cè)拋物線知識(shí)點(diǎn)

高二上學(xué)期數(shù)學(xué)教學(xué)總結(jié)2022最新

2022中考數(shù)學(xué)知識(shí)點(diǎn)歸納

2022年數(shù)學(xué)高考知識(shí)點(diǎn)

高二數(shù)學(xué)試卷練習(xí)題及答案

2022高二個(gè)人學(xué)期末總結(jié)

2022初中數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)

2022高二數(shù)學(xué)期中知識(shí)點(diǎn)

知識(shí)是取之不盡,用之不竭的。只有限度地挖掘它,才能體會(huì)到學(xué)習(xí)的樂趣。任何一門學(xué)科的知識(shí)都需要大量的記憶和練習(xí)來鞏固。雖然辛苦,但也伴隨著快樂!下面是小編給大家整理的高二數(shù)學(xué)知識(shí)點(diǎn),希望對(duì)大家有所幫助。
推薦度:
點(diǎn)擊下載文檔文檔為doc格式
1215922