學習啦>學習方法>高中學習方法>高二學習方法>高二數(shù)學>

高二數(shù)學必修五第三課的知識點歸納

時間: 贊銳0 分享

學習上的自主意識不可能有外界的力量強加于你,只有自己才能夠讓自己的學習行為產(chǎn)生自覺性,因此變“要我學為我要學”在高二時期顯得更為重要。以下是小編給大家整理的高二數(shù)學知識點,歡迎閱讀!

高二數(shù)學必修五第三課的知識點歸納1

1、導數(shù)的定義:在點處的導數(shù)記作.

2.導數(shù)的幾何物理意義:曲線在點處切線的斜率

①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。

3.常見函數(shù)的導數(shù)公式:

4.導數(shù)的四則運算法則:

5.導數(shù)的應(yīng)用:

(1)利用導數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個區(qū)間內(nèi)可導,如果,那么為增函數(shù);如果,那么為減函數(shù);

注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

(2)求極值的步驟:

①求導數(shù);

②求方程的根;

③列表:檢驗在方程根的左右的符號,如果左正右負,那么函數(shù)在這個根處取得極大值;如果左負右正,那么函數(shù)在這個根處取得極小值;

(3)求可導函數(shù)值與最小值的步驟:

ⅰ求的根;ⅱ把根與區(qū)間端點函數(shù)值比較,的為值,最小的是最小值。

高二數(shù)學必修五第三課的知識點歸納2

1.輾轉(zhuǎn)相除法是用于求公約數(shù)的一種方法,這種算法由歐幾里得在公元前年左右首先提出,因而又叫歐幾里得算法.

2.所謂輾轉(zhuǎn)相法,就是對于給定的兩個數(shù),用較大的數(shù)除以較小的數(shù).若余數(shù)不為零,則將較小的數(shù)和余數(shù)構(gòu)成新的一對數(shù),繼續(xù)上面的除法,直到大數(shù)被小數(shù)除盡,則這時的除數(shù)就是原來兩個數(shù)的公約數(shù).

3.更相減損術(shù)是一種求兩數(shù)公約數(shù)的方法.其基本過程是:對于給定的兩數(shù),用較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù),繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)就是所求的公約數(shù).

4.秦九韶算法是一種用于計算一元二次多項式的值的方法.

5.常用的排序方法是直接插入排序和冒泡排序.

6.進位制是人們?yōu)榱擞嫈?shù)和運算方便而約定的記數(shù)系統(tǒng).“滿進一”,就是k進制,進制的基數(shù)是k.

7.將進制的數(shù)化為十進制數(shù)的方法是:先將進制數(shù)寫成用各位上的數(shù)字與k的冪的乘積之和的形式,再按照十進制數(shù)的運算規(guī)則計算出結(jié)果.

8.將十進制數(shù)化為進制數(shù)的方法是:除k取余法.即用k連續(xù)去除該十進制數(shù)或所得的商,直到商為零為止,然后把每次所得的余數(shù)倒著排成一個數(shù)就是相應(yīng)的進制數(shù).

1.重點:理解輾轉(zhuǎn)相除法與更相減損術(shù)的原理,會求兩個數(shù)的公約數(shù);理解秦九韶算法原理,會求一元多項式的值;會對一組數(shù)據(jù)按照一定的規(guī)則進行排序;理解進位制,能進行各種進位制之間的轉(zhuǎn)化.

2.難點:秦九韶算法求一元多項式的值及各種進位制之間的轉(zhuǎn)化.

3.重難點:理解輾轉(zhuǎn)相除法與更相減損術(shù)、秦九韶算法原理、排序方法、進位制之間的轉(zhuǎn)化方法.

高二數(shù)學必修五第三課的知識點歸納3

等差數(shù)列

對于一個數(shù)列{an},如果任意相鄰兩項之差為一個常數(shù),那么該數(shù)列為等差數(shù)列,且稱這一定值差為公差,記為d;從第一項a1到第n項an的總和,記為Sn。

那么,通項公式為,其求法很重要,利用了“疊加原理”的思想:

將以上n-1個式子相加,便會接連消去很多相關(guān)的項,最終等式左邊余下an,而右邊則余下a1和n-1個d,如此便得到上述通項公式。

此外,數(shù)列前n項的和,其具體推導方式較簡單,可用以上類似的疊加的方法,也可以采取迭代的方法,在此,不再復述。

值得說明的是,前n項的和Sn除以n后,便得到一個以a1為首項,以d/2為公差的新數(shù)列,利用這一特點可以使很多涉及Sn的數(shù)列問題迎刃而解。

等比數(shù)列

對于一個數(shù)列{an},如果任意相鄰兩項之商(即二者的比)為一個常數(shù),那么該數(shù)列為等比數(shù)列,且稱這一定值商為公比q;從第一項a1到第n項an的總和,記為Tn。

那么,通項公式為(即a1乘以q的(n-1)次方,其推導為“連乘原理”的思想:

a2=a1_q,

a3=a2_q,

a4=a3_q,

````````

an=an-1_q,

將以上(n-1)項相乘,左右消去相應(yīng)項后,左邊余下an,右邊余下a1和(n-1)個q的乘積,也即得到了所述通項公式。

此外,當q=1時該數(shù)列的前n項和Tn=a1_n

當q≠1時該數(shù)列前n項的和Tn=a1_(1-q^(n))/(1-q).

高二數(shù)學必修五第三課的知識點歸納相關(guān)文章

高二數(shù)學必修5第三章知識點總結(jié)

高二數(shù)學必修5知識點總結(jié)

高二數(shù)學必修5第三章不等式知識點總結(jié)

高中數(shù)學必修5數(shù)列知識點總結(jié)

高二數(shù)學必修三知識點總結(jié)

高中數(shù)學必修5知識點總結(jié)

高中數(shù)學學霸提分秘籍:必修五知識點總結(jié)

高二數(shù)學必修三第三章知識點總結(jié)

高二必修三數(shù)學知識點歸納

高二數(shù)學必修三知識點

高二數(shù)學必修五第三課的知識點歸納

學習上的自主意識不可能有外界的力量強加于你,只有自己才能夠讓自己的學習行為產(chǎn)生自覺性,因此變“要我學為我要學”在高二時期顯得更為重要。以下是小編給大家整理的高二數(shù)學知識點,歡迎閱讀!高二數(shù)學必修五第三
推薦度:
點擊下載文檔文檔為doc格式
1079329