高二數(shù)學必修三知識點總結
高二這一年,是成績分化的分水嶺,成績會形成兩極分化:行則扶搖直上,不行則每況愈下。下面是小編為大家整理的高二數(shù)學知識點,歡迎閱讀,希望能幫到大家。
高二數(shù)學知識點總結1
【一】
(一)基本概念
必然事件
確定事件
1、事件不可能事件
不確定事件(隨機事件)
2、什么叫概率?
表示一個事件發(fā)生可能性的大小,記為P(事件名稱)=a;
練習一:判斷下列事件的類型
(1)今天是星期二,明天是星期三;
(2)擲一枚質地均勻的正方體骰子,得到點數(shù)7;
(3)買彩票中了500萬大獎;
(4)拋兩枚硬幣都是正面朝上;
(5)從一副洗好的牌中(54張)中抽出紅桃A。
(二)預測隨機事件的概率
1、步驟:
(1)找出所有機會均等的結果,作為概率的分母
注:不能僅憑主觀判斷,而應利用列舉法、樹狀圖、列表法等方法找。
(2)明確關注結果,作為分子
2、用列表法或樹狀圖分析復雜情況下機會均等結果
【二】
一、隨機事件
主要掌握好(三四五)
(1)事件的三種運算:并(和)、交(積)、差;注意差A-B可以表示成A與B的逆的積。
(2)四種運算律:交換律、結合律、分配律、德莫根律。
(3)事件的五種關系:包含、相等、互斥(互不相容)、對立、相互獨立。
二、概率定義
(1)統(tǒng)計定義:頻率穩(wěn)定在一個數(shù)附近,這個數(shù)稱為事件的概率;(2)古典定義:要求樣本空間只有有限個基本事件,每個基本事件出現(xiàn)的可能性相等,則事件A所含基本事件個數(shù)與樣本空間所含基本事件個數(shù)的比稱為事件的古典概率;
(3)幾何概率:樣本空間中的元素有無窮多個,每個元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個幾何圖形,事件A看成這個圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計算;
(4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。
三、概率性質與公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
如果一個事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.
(5)二項概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當一個問題可以看成n重貝努力試驗(三個條件:n次重復,每次只有A與A的逆可能發(fā)生,各次試驗結果相互獨立)時,要考慮二項概率公式.
【三】
1.輾轉相除法是用于求公約數(shù)的一種方法,這種算法由歐幾里得在公元前年左右首先提出,因而又叫歐幾里得算法.
2.所謂輾轉相法,就是對于給定的兩個數(shù),用較大的數(shù)除以較小的數(shù).若余數(shù)不為零,則將較小的數(shù)和余數(shù)構成新的一對數(shù),繼續(xù)上面的除法,直到大數(shù)被小數(shù)除盡,則這時的除數(shù)就是原來兩個數(shù)的公約數(shù).
3.更相減損術是一種求兩數(shù)公約數(shù)的方法.其基本過程是:對于給定的兩數(shù),用較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù),繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)就是所求的公約數(shù).
4.秦九韶算法是一種用于計算一元二次多項式的值的方法.
5.常用的排序方法是直接插入排序和冒泡排序.
6.進位制是人們?yōu)榱擞嫈?shù)和運算方便而約定的記數(shù)系統(tǒng).“滿進一”,就是k進制,進制的基數(shù)是k.
7.將進制的數(shù)化為十進制數(shù)的方法是:先將進制數(shù)寫成用各位上的數(shù)字與k的冪的乘積之和的形式,再按照十進制數(shù)的運算規(guī)則計算出結果.
8.將十進制數(shù)化為進制數(shù)的方法是:除k取余法.即用k連續(xù)去除該十進制數(shù)或所得的商,直到商為零為止,然后把每次所得的余數(shù)倒著排成一個數(shù)就是相應的進制數(shù).
高二數(shù)學知識點總2
第一章 算法初步
算法的概念
算法的特點
(1)有限性:
一個算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.
(2)確定性:
算法中的每一步應該是確定的并且能有效地執(zhí)行且得到確定的結果,而不應當 是模棱兩可.
(3)順序性與正確性:
算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個 確定的 后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進行下一步,并且每 一 步都準確無誤,才能完成問題.
(4)不唯一性:
求解某一個問題的解法不一定是唯一的,對于一個問題可以有不同的算法.
(5)普遍性:
很多具體的問題,都可以設計合理的算法去解決,如心算、計算器計算都要經(jīng)過 有限、事先設計好的步驟加以解決.
程序框圖
1、程序框圖基本概念:
(一)程序構圖的概念:程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來 準確、直觀地表示算法的圖形。
一個程序框圖包括以下幾部分:
1.表示相應操作的程序框;
2.帶箭頭的流程線;
3.程序框外
4.必要文字說明。
(二)構成程序框的圖形符號及其作用
畫程序框圖的規(guī)則如下:
1、使用標準的圖形符號。
2、框圖一般按從上到下、從左到右的方向畫。
3、除判斷框外,大多數(shù)流程圖符號只有一個進入點和一個退出點。判斷框具有超過一個退 出點的唯一符號。
4、判斷框分兩大類,一類判斷框“是”與“否”兩分支的判斷,而且有且僅有兩個結果; 另一類是多分支判斷,有幾種不同的結果。
5、在圖形符號內(nèi)描述的語言要非常簡練清楚。
(三)、算法的三種基本邏輯結構:順序結構、條件結構、循環(huán)結構。
#FormatImgID_0# 1、順序結構:順序結構是最簡單的算法結構,語句與語句之間,框與框之間是按從上到下的順序進行的,它是由若干個依次執(zhí)行的處理步驟組成的,它是任何一個算法都離不開的一種基本算法結構。
順序結構在程序框圖中的體現(xiàn)就是用流程線將程序框自上而
下地連接起來,按順序執(zhí)行算法步驟。如在示意圖中,A框和B
框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)
行B框所指定的操作。
2、條件結構:
條件結構是指在算法中通過對條件的判斷根據(jù)條件是否成立而選擇不同流向的算法結 構。條件P是否成立而選擇執(zhí)行A框或B框。無論P條件是否成立,只能執(zhí)行A框或B 框之一,不可能同時執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行。一個判斷結構可 以有多個判斷框。
3、循環(huán)結構:
在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復執(zhí)行某一處理步驟的情況, 這就是循環(huán)結構,反復執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結構中一定包含條件結構。 循環(huán)結構又稱重復結構。
循環(huán)結構可細分為兩類:
(1)一類是當型循環(huán)結構
如下左圖所示,它的功能是當給定的條件P成立時,執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復執(zhí)行A框,直到某一次條件P不成立為止,此時不再執(zhí)行A框,離開循環(huán)結構。
(2)另一類是直到型循環(huán)結構
如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時不再執(zhí)行A框,離開循環(huán)結構。
當型循環(huán)結構 直到型循環(huán)結構
輸入、輸出語句和賦值語句
賦值語句
(1)賦值語句的一般格式
(2)賦值語句的作用是將表達式所代表的值賦給變量;
(3)賦值語句中的“=”稱作賦值號,與數(shù)學中的等號的意義是不同的。賦值號的左右兩 邊不能對換,它將賦值號右邊的表達式的值賦給賦值號左邊的變量;
(4)賦值語句左邊只能是變量名字,而不是表達式,右邊表達式可以是一個數(shù)據(jù)、常量或 算式;
(5)對于一個變量可以多次賦值。
注意:
①賦值號左邊只能是變量名字,而不能是表達式。如:2=X是錯誤的。
②賦值號左右不能對換。如“A=B”“B=A”的含義運行結果是不同的。
③不能利用賦值語句進行代數(shù)式的演算。(如化簡、因式分解、解方程等)
④賦值號“=”與數(shù)學中的等號意義不同。
注意:
在IF—THEN—ELSE語句中,“條件”表示判斷的條件,“語句1”表示滿足條件時執(zhí)行的操作內(nèi)容;“語句2”表示不滿足條件時執(zhí)行的操作內(nèi)容;END IF表示條件語句的結束。計算機在執(zhí)行時,首先對IF后的條件進行判斷,如果條件符合,則執(zhí)行THEN后面的語句1;若條件不符合,則執(zhí)行ELSE后面的語句2
第二章 統(tǒng)計
簡單隨機抽樣
1.總體和樣本:
1.研究對象的全體叫做總體.
2.每個研究對象叫做個體.
3.總體中個體的總數(shù)叫做總體容量.
4.樣本容量:一般從總體中隨機抽取一部分:
研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.
2.簡單隨機抽樣:
從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調(diào)查單位。
特點:
每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間 無一定的關聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在 總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
3.簡單隨機抽樣常用的方法:
(1)抽簽法;
⑵隨機數(shù)表法;
⑶計算機模擬法;
⑷使用統(tǒng)計軟件直接抽取。
4.抽簽法:
(1)給調(diào)查對象群體中的每一個對象編號;
(2)準備抽簽的工具,實施抽簽
(3)對樣本中的每一個個體進行測量或調(diào)查
5.隨機數(shù)表法
系統(tǒng)抽樣
把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣 本。第一個樣本采用簡單隨機抽樣的辦法抽取。
K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)
分層抽樣
先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或層次,然后再在各個類型或層次中采用簡單隨機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構成總體的樣本。
兩種方法:
(1)按比例分層抽樣:
根據(jù)各種類型或層次中的單位數(shù)目占總體單位數(shù)目的比重來抽取樣本的方法。
(2)不按比例分層抽樣:
有的層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便 于對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體 時,則需要先對各層的數(shù)據(jù)資料進行加權處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢 復到總體中各層實際的比例結構。
2.2.2用樣本的數(shù)字特征估計總體的數(shù)字特征
1、平均值:
2、.樣本標準差:
4.(1)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個共同的常數(shù),標準差不變
(2)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)乘以一個共同的常數(shù)k,標準差變?yōu)樵瓉淼膋倍
2.3.2兩個變量的線性相關
1、概念: (1)回歸直線方程 (2)回歸系數(shù)
2.回歸直線方程的應用
(1)描述兩變量之間的依存關系;利用直線回歸方程即可定量描述兩個變量間依存的數(shù)量關系
(2)利用回歸方程進行預測;把預報因子(即自變量x)代入回歸方程對預報量(即因變量Y)進行估計,即可得到個體Y值的容許區(qū)間。
第三章 概 率
隨機事件的概率及概率的意義
1、基本概念:
(1)必然事件:在某種條件下,一定會發(fā)生的事件,叫做必然事件;
(2)不可能事件:在某種條件下,一定不會發(fā)生的事件,叫做不可能事件;
(3)隨機事件:在某種條件下可能發(fā)生也可能不發(fā)生的事件,叫做隨機事件;
(4)基本事件:
試驗中不能再分的最簡單的隨機事件,其他事件可以用它們來描繪,這樣 的 時間叫基本事件;
(5)基本事件空間:
所有基本事件構成的集合,叫做基本事件空間,用大寫希臘字母Ω表示;
(5)頻數(shù)、頻率:
在相同的條件下重復n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗 中事件A出現(xiàn)的次數(shù)為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例為事 件A出現(xiàn)的頻率;
(6)概率:
在n次重復進行的試驗中,時間A發(fā)生的頻率m\n,當n很大時,總是在某個常 熟附近擺動,隨著n的增加,擺動幅度越來越小,這時就把這個常熟叫做事件A 的概率,記作P(A),0≤P(A)≤1;
概率的基本性質
1.必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;
2.當事件A與B互斥時,滿足加法公式:P(A∪B)= P(A)+ P(B);
3.若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)= P(A)+ P(B)=1,于 是有P(A)=1—P(B);
4.互斥事件與對立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗中不 會同時發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2) 事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時不發(fā)生,而對立事件是指事 件A與事件B有且僅有一個發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2) 事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形。
古典概型
(1)古典概型的使用條件:試驗結果的有限性和所有結果的等可能性。
(2)古典概型的解題步驟;
①求出總的基本事件數(shù);
②求出事件A所包含的基本事件數(shù),然后利用公式P(A)=#FormatImgID_5#
幾何概型
基本概念:
(1)幾何概率模型:如果每個事件發(fā)生的概率只與構成該事件區(qū)域的長度(面積或體積) 成比例,則稱這樣的概率模型為幾何概率模型;
(2)幾何概型的概率公式:
P(A)=
(3)幾何概型的特點:
1)試驗中所有可能出現(xiàn)的結果(基本事件)有無限多個;
2)每個基本事件出現(xiàn)的可能性相等.
高二數(shù)學知識點總結3
一、簡諧運動
1.機械振動:機械振動是指物體在平衡位置附近所做的往復運動.
2.回復力:回復力是指振動物體所受到的指向平衡位置的力,是由作用效果來命名的.回復力的作用效果總是將物體拉回平衡位置,從而使物體圍繞平衡位置做周期性的往復運動。回復力是由振動物體所受力的合力(如彈簧振子)沿振動方向的分力(如單擺)提供的,這就是回復力的來源。
3.平衡位置:平衡位置是指物體在振動中所受的回復力為零的位置,此時振子未必一定處于平衡狀態(tài).比如單擺經(jīng)過平衡位置時,雖然回復力為零,但合外力并不為零,還有向心力.
4.描述振動的物理量:
①位移總是相對于平衡位置而言的,方向總是由平衡位置指向振子所在的位置—總是背離平衡位置向外;②振幅是物體離開平衡位置的最大距離,它描述的是振動的強弱,振幅是標量;③頻率是單位時間內(nèi)完成全振動的次數(shù);④相位用來描述振子振動的步調(diào)。如果振動的振動情況完全相反,則振動步調(diào)相反,為反相位.
5.簡諧運動:A、簡諧運動的回復力和位移的變化規(guī)律;B、單擺的周期。由本身性質決定的周期叫固有周期,與擺球的質量、振幅(振動的總能量)無關。
6.簡諧運動的表達式和圖象:x=Asin(ωt+φ0) 簡諧運動的圖象描述的是一個質點做簡諧運動時,在不同時刻的位移,因而振動圖象反映了振子的運動規(guī)律(注意:振動圖象不是運動軌跡)。由振動圖象還可以確定振子某時刻的振動方向.
7.簡諧運動的能量:不計摩擦和空氣阻力的振動是理想化的振動,此時系統(tǒng)只有重力或彈力做功,機械能守恒。振動的能量和振幅有關,振幅越大,振動的能量越大。
高二數(shù)學知識點總結4
隨機事件的概率
平面直角坐標系
證明不等式的方法
絕對值不等式
均勻隨機數(shù)的產(chǎn)生
隨機事件的概率
概率的基本性質
古典概型
不等式與不等關系
基本不等式
等差數(shù)列
簡單的邏輯連接詞
全稱量詞與存在量詞
基本不等式的證明
正弦定理
充要條件
三角函數(shù)的誘導公式
函數(shù)y=Asin(wx+φ)的圖像
正弦函數(shù)、余弦函數(shù)的圖象
等比數(shù)列
四種命題
三角函數(shù)模型的簡單應用
任意角的三角函數(shù)
《隨機數(shù)的產(chǎn)生》
不等式
等差數(shù)列的前N項和
任意角的三角函數(shù)
函數(shù)y=Asin(ωx+ψ)的圖象
任意角和弧度制
正弦函數(shù)、余弦函數(shù)的圖象
高二數(shù)學知識點總結5
練習:
已知方程 表示焦點在x軸
上的橢圓,則m的取值范圍是 .
(0,4)
(1,2)
練習:求適合下列條件的橢圓的標準方程:
(2)焦點為F1(0,-3),F2(0,3),且a=5.
(3)兩個焦點分別是F1(-2,0)、F2(2,0),且過P(2,3)點;
(4)經(jīng)過點P(-2,0)和Q(0,-3).
小結:求橢圓標準方程的步驟:
①定位:確定焦點所在的坐標軸;
②定量:求a, b的值.
例1 :將圓 = 4上的點的橫坐標保持不變,
縱坐標變?yōu)樵瓉淼囊话?,求所的曲線的方程,
并說明它是什么曲線?
解:
將圓按照某個方向均勻地壓縮(拉長),可以得到橢圓。
2)利用中間變量求點的軌跡方程
的方法是解析幾何中常用的方法;
練習
1 橢圓上一點P到一個焦點的距離為5,
則P到另一個焦點的距離為( )
A.5 B.6 C.4 D.10
A
2.橢圓 的焦點坐標是( )
A.(±5,0)? B.(0,±5) ?
C.(0,±12)? D.(±12,0)
C
3.已知橢圓的方程為 ,焦點在X軸上,
則其焦距為( )
A 2 B 2
C 2 D 2
A
,焦點在y軸上的橢圓的標準方程
l 是 __________.
例2已知圓A:(x+3)2+y2=100,圓A內(nèi)一
定點B(3,0),圓P過B點且與圓A內(nèi)切,求圓心
P的軌跡方程.
解:設|PB|=r.
∵圓P與圓A內(nèi)切,圓A的半徑為10.
∴兩圓的圓心距|PA|=10-r,
即|PA|+|PB|=10(大于|AB|).
∴點P的軌跡是以A、B兩點為焦點的橢圓.
∴2a=10,
2c=|AB|=6,
∴a=5,c=3.
∴b2=a2-c2=25-9=16.
即點P的軌跡方程為 =1.
例3在⊿ABC中,BC=24,AC、AB邊上的中線之
和為39,求⊿ABC的重心的軌跡方程.
練習
已知F1、F2是橢圓 的焦點,P為橢圓上
一點,且 ,則 的面積為_____.
高二數(shù)學必修三知識點總結相關文章: