學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)>

高二數(shù)學(xué)知識(shí)點(diǎn)及公式整理

時(shí)間: 贊銳0 分享

只有高效的學(xué)習(xí)方法,才可以很快的掌握知識(shí)的重難點(diǎn)。有效的讀書(shū)方式根據(jù)規(guī)律掌握方法,不要一來(lái)就死記硬背,先找規(guī)律,再記憶,然后再學(xué)習(xí),就能很快的掌握知識(shí)。以下是小編給大家整理的高二數(shù)學(xué)知識(shí)點(diǎn)及公式整理,希望大家能夠喜歡!

高二數(shù)學(xué)知識(shí)點(diǎn)及公式整理1

1、向量的加法

向量的加法滿足平行四邊形法則和三角形法則。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的運(yùn)算律:

交換律:a+b=b+a;

結(jié)合律:(a+b)+c=a+(b+c)。

2、向量的減法

如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0.0的反向量為0

AB-AC=CB.即“共同起點(diǎn),指向被減”

a=(x,y)b=(x',y')則a-b=(x-x',y-y').

4、數(shù)乘向量

實(shí)數(shù)λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

當(dāng)λ>0時(shí),λa與a同方向;

當(dāng)λ<0時(shí),λa與a反方向;

當(dāng)λ=0時(shí),λa=0,方向任意。

當(dāng)a=0時(shí),對(duì)于任意實(shí)數(shù)λ,都有λa=0。

注:按定義知,如果λa=0,那么λ=0或a=0。

實(shí)數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長(zhǎng)或壓縮。

當(dāng)∣λ∣>1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長(zhǎng)為原來(lái)的∣λ∣倍;

當(dāng)∣λ∣<1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來(lái)的∣λ∣倍。

數(shù)與向量的乘法滿足下面的運(yùn)算律

結(jié)合律:(λa)·b=λ(a·b)=(a·λb)。

向量對(duì)于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.

數(shù)對(duì)于向量的分配律(第二分配律):λ(a+b)=λa+λb.

數(shù)乘向量的消去律:①如果實(shí)數(shù)λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。

3、向量的的數(shù)量積

定義:兩個(gè)非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。

定義:兩個(gè)向量的數(shù)量積(內(nèi)積、點(diǎn)積)是一個(gè)數(shù)量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。

向量的數(shù)量積的坐標(biāo)表示:a·b=x·x'+y·y'。

向量的數(shù)量積的運(yùn)算率

a·b=b·a(交換率);

(a+b)·c=a·c+b·c(分配率);

向量的數(shù)量積的性質(zhì)

a·a=|a|的平方。

a⊥b〈=〉a·b=0。

|a·b|≤|a|·|b|。

高二數(shù)學(xué)知識(shí)點(diǎn)及公式整理2

1.萬(wàn)能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)

2.輔助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a

3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

高二數(shù)學(xué)知識(shí)點(diǎn)及公式整理3

1.計(jì)數(shù)原理知識(shí)點(diǎn)

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分類)

2.排列(有序)與組合(無(wú)序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

3.排列組合混合題的解題原則:先選后排,先分再排

排列組合題的主要解題方法:優(yōu)先法:以元素為主,應(yīng)先滿足特殊元素的要求,再考慮其他元素.以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置.

捆綁法(集團(tuán)元素法,把某些必須在一起的元素視為一個(gè)整體考慮)

插空法(解決相間問(wèn)題)間接法和去雜法等等

在求解排列與組合應(yīng)用問(wèn)題時(shí),應(yīng)注意:

(1)把具體問(wèn)題轉(zhuǎn)化或歸結(jié)為排列或組合問(wèn)題;

(2)通過(guò)分析確定運(yùn)用分類計(jì)數(shù)原理還是分步計(jì)數(shù)原理;

(3)分析題目條件,避免“選取”時(shí)重復(fù)和遺漏;

(4)列出式子計(jì)算和作答.

經(jīng)常運(yùn)用的數(shù)學(xué)思想是:

①分類討論思想;②轉(zhuǎn)化思想;③對(duì)稱思想.

4.二項(xiàng)式定理知識(shí)點(diǎn):

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性質(zhì)和主要結(jié)論:對(duì)稱性Cnm=Cnn-m

二項(xiàng)式系數(shù)在中間。(要注意n為奇數(shù)還是偶數(shù),答案是中間一項(xiàng)還是中間兩項(xiàng))

所有二項(xiàng)式系數(shù)的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇數(shù)項(xiàng)二項(xiàng)式系數(shù)的和=偶數(shù)項(xiàng)而是系數(shù)的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通項(xiàng)為第r+1項(xiàng):Tr+1=Cnran-rbr作用:處理與指定項(xiàng)、特定項(xiàng)、常數(shù)項(xiàng)、有理項(xiàng)等有關(guān)問(wèn)題。

5.二項(xiàng)式定理的應(yīng)用:解決有關(guān)近似計(jì)算、整除問(wèn)題,運(yùn)用二項(xiàng)展開(kāi)式定理并且結(jié)合放縮法證明與指數(shù)有關(guān)的不等式。

6.注意二項(xiàng)式系數(shù)與項(xiàng)的系數(shù)(字母項(xiàng)的系數(shù),指定項(xiàng)的系數(shù)等,指運(yùn)算結(jié)果的系數(shù))的區(qū)別,在求某幾項(xiàng)的系數(shù)的和時(shí)注意賦值法的應(yīng)用。

高二數(shù)學(xué)知識(shí)點(diǎn)及公式整理相關(guān)文章

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)及公式2020

高二數(shù)學(xué)知識(shí)點(diǎn)及公式

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)及公式大全

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)全

高二數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)

最新高二數(shù)學(xué)公式知識(shí)點(diǎn)匯總

高二數(shù)學(xué)必背知識(shí)點(diǎn)總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)及公式整理

只有高效的學(xué)習(xí)方法,才可以很快的掌握知識(shí)的重難點(diǎn)。有效的讀書(shū)方式根據(jù)規(guī)律掌握方法,不要一來(lái)就死記硬背,先找規(guī)律,再記憶,然后再學(xué)習(xí),就能很快的掌握知識(shí)。以下是小編給大家整理的高二數(shù)學(xué)知識(shí)點(diǎn)及公式整理,
推薦度:
點(diǎn)擊下載文檔文檔為doc格式
1079330