學習啦 > 學習方法 > 高中學習方法 > 高二學習方法 > 高二數(shù)學 >

高二數(shù)學知識點全總結(jié)

時間: 淑燕20 分享

高二數(shù)學知識點你學會了嗎?現(xiàn)在數(shù)學是比較難學的,尤其是高二的知識點也是比較多的。一起來看看高二數(shù)學知識點全總結(jié),歡迎查閱!

高二數(shù)學知識點全總結(jié)

高二數(shù)學知識點歸納:復合函數(shù)定義域

若函數(shù)y=f(u)的定義域是B,u=g(x)的定義域是A,則復合函數(shù)y=f[g(x)]的定義域是D={x|x∈A,且g(x)∈B}綜合考慮各部分的x的取值范圍,取他們的交集。

求函數(shù)的定義域主要應考慮以下幾點:

⑴當為整式或奇次根式時,R的值域;

⑵當為偶次根式時,被開方數(shù)不小于0(即≥0);

⑶當為分式時,分母不為0;當分母是偶次根式時,被開方數(shù)大于0;

⑷當為指數(shù)式時,對零指數(shù)冪或負整數(shù)指數(shù)冪,底不為0。

⑸當是由一些基本函數(shù)通過四則運算結(jié)合而成的,它的定義域應是使各部分都有意義的自變量的值組成的集合,即求各部分定義域集合的交集。

⑹分段函數(shù)的定義域是各段上自變量的取值集合的并集。

⑺由實際問題建立的函數(shù),除了要考慮使解析式有意義外,還要考慮實際意義對自變量的要求

⑻對于含參數(shù)字母的函數(shù),求定義域時一般要對字母的取值情況進行分類討論,并要注意函數(shù)的定義域為非空集合。

⑼對數(shù)函數(shù)的真數(shù)必須大于零,底數(shù)大于零且不等于1。

⑽三角函數(shù)中的切割函數(shù)要注意對角變量的限制。

復合函數(shù)常見題型

(?)已知f(x)定義域為A,求f[g(x)]的定義域:實質(zhì)是已知g(x)的范圍為A,以此求出x的范圍。

(?)已知f[g(x)]定義域為B,求f(x)的定義域:實質(zhì)是已知x的范圍為B,以此求出g(x)的范圍。

(?)已知f[g(x)]定義域為C,求f[h(x)]的定義域:實質(zhì)是已知x的范圍為C,以此先求出g(x)的范圍(即f(x)的定義域);然后將其作為h(x)的范圍,以此再求出x的范圍。

高二數(shù)學知識點歸納:直線、平面、簡單幾何體

1、學會三視圖的分析:

2、斜二測畫法應注意的地方:

(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o'x'、o'y'、使∠x'o'y'=45°(或135°);

(2)平行于x軸的線段長不變,平行于y軸的線段長減半.

(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

3、表(側(cè))面積與體積公式:

⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h

⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:

⑶臺體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=

⑷球體:①表面積:S=;②體積:V=

4、位置關系的證明(主要方法):注意立體幾何證明的書寫

(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

(2)平面與平面平行:①線面平行面面平行。

(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;

⑵直線與平面所成的角:直線與射影所成的角

高二數(shù)學知識點歸納:函數(shù)

1.求函數(shù)的單調(diào)性:

利用導數(shù)求函數(shù)單調(diào)性的基本方法:設函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導,(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。

利用導數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。

反過來,也可以利用導數(shù)由函數(shù)的單調(diào)性解決相關問題(如確定參數(shù)的取值范圍):設函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導,

(1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

(2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

(3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。

2.求函數(shù)的極值:

設函數(shù)yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)。

可導函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:

(1)確定函數(shù)f(x)的定義域;(2)求導數(shù)f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區(qū)間,并列表:x變化時,f(x)和f(x)值的變化情況:

(4)檢查f(x)的符號并由表格判斷極值。

3.求函數(shù)的值與最小值:

如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的值。函數(shù)在定義域內(nèi)的極值不一定,但在定義域內(nèi)的最值是的。

求函數(shù)f(x)在區(qū)間[a,b]上的值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;

(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的值與最小值。

4.解決不等式的有關問題:

(1)不等式恒成立問題(絕對不等式問題)可考慮值域。

f(x)(xA)的值域是[a,b]時,

不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

不等式f(x)0恒成立的充要條件是f(x)min0,即a0。

f(x)(xA)的值域是(a,b)時,

不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。

(2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。

5.導數(shù)在實際生活中的應用:

實際生活求解(小)值問題,通常都可轉(zhuǎn)化為函數(shù)的最值.在利用導數(shù)來求函數(shù)最值時,一定要注意,極值點的單峰函數(shù),極值點就是最值點,在解題時要加以說明。

高二數(shù)學知識點全總結(jié)相關文章:

高二數(shù)學知識點總結(jié)

高二數(shù)學知識點歸納小總結(jié)

高二數(shù)學知識點歸納總結(jié)

高二數(shù)學考點知識點總結(jié)復習大綱

高二數(shù)學知識點2020總結(jié)

高二數(shù)學知識點總結(jié)歸納

高二數(shù)學知識點復習總結(jié)

高二數(shù)學知識點新總結(jié)2020

高二數(shù)學知識點總結(jié)人教版

高二數(shù)學知識點總結(jié)詳細

867036