學習啦>學習方法>高中學習方法>高一學習方法>高一數(shù)學>

高一數(shù)學必修2知識總結(jié)2022

時間: 維維0 分享

不盡一切背離公正的知識應(yīng)當被稱作為詭計而不應(yīng)當被稱作為智慧,而且即便是臨危不懼的勇氣,如果它不是出于公心,而是出自于知識的目的,那也應(yīng)當被稱作厚顏而不應(yīng)當被稱作勇敢!下面給大家分享一些關(guān)于高一數(shù)學必修2知識總結(jié)2020,希望對大家有所幫助。

高一數(shù)學必修2知識總結(jié)1

空間直線與直線之間的位置關(guān)系①異面直線定義:不同在任何一個平面內(nèi)的兩條直線

②異面直線性質(zhì):既不平行,又不相交.

③異面直線判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線

④異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.

求異面直線所成角步驟:

A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來求角

(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補.

(8)空間直線與平面之間的位置關(guān)系

直線在平面內(nèi)——有無數(shù)個公共點.

三種位置關(guān)系的符號表示:aαa∩α=Aa‖α

(9)平面與平面之間的位置關(guān)系:平行——沒有公共點;α‖β

相交——有一條公共直線.α∩β=b

5、空間中的平行問題

(1)直線與平面平行的判定及其性質(zhì)

線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.

線線平行線面平行

線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,

那么這條直線和交線平行.線面平行線線平行

(2)平面與平面平行的判定及其性質(zhì)

兩個平面平行的判定定理

(1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行

(線面平行→面面平行),

(2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行.

(線線平行→面面平行),

(3)垂直于同一條直線的兩個平面平行,

兩個平面平行的性質(zhì)定理

(1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行.(面面平行→線面平行)

(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行.(面面平行→線線平行)

7、空間中的垂直問題

(1)線線、面面、線面垂直的定義

①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.

②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直.

③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.

(2)垂直關(guān)系的判定和性質(zhì)定理

①線面垂直判定定理和性質(zhì)定理

判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面.

性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行.

②面面垂直的判定定理和性質(zhì)定理

判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直.

性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面.

9、空間角問題

(1)直線與直線所成的角

①兩平行直線所成的角:規(guī)定為.

②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.

③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.

(2)直線和平面所成的角

①平面的平行線與平面所成的角:規(guī)定為.②平面的垂線與平面所成的角:規(guī)定為.

③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角.

求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”.

在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點到面的垂線,

在解題時,注意挖掘題設(shè)中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線.

(3)二面角和二面角的平面角

①二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.

②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.

③直二面角:平面角是直角的二面角叫直二面角.

兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

④求二面角的方法

定義法:在棱上選擇有關(guān)點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角

垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

高一數(shù)學必修2知識總結(jié)2

解三角形(1)正弦定理和余弦定理

掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題.

(2)應(yīng)用

能夠運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的實際問題.

高一數(shù)學必修2知識總結(jié)3

數(shù)列(1)數(shù)列的概念和簡單表示法

①了解數(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項公式).

②了解數(shù)列是自變量為正整數(shù)的一類函數(shù).

(2)等差數(shù)列、等比數(shù)列

①理解等差數(shù)列、等比數(shù)列的概念.

②掌握等差數(shù)列、等比數(shù)列的通項公式與前項和公式.

③能在具體的問題情境中,識別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題.

④了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.

高中數(shù)學必修二知識點總結(jié):不等式

高一數(shù)學必修2知識總結(jié)4

不等關(guān)系了解現(xiàn)實世界和日常生活中的不等關(guān)系,了解不等式(組)的實際背景.

(2)一元二次不等式

①會從實際情境中抽象出一元二次不等式模型.

②通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.

③會解一元二次不等式,對給定的一元二次不等式,會設(shè)計求解的程序框圖.

(3)二元一次不等式組與簡單線性規(guī)劃問題

①會從實際情境中抽象出二元一次不等式組.

②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.

③會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.

(4)基本不等式:

①了解基本不等式的證明過程.

②會用基本不等式解決簡單的最大(小)值問題圓的輔助線一般為連圓心與切線或者連圓心與弦中點

高一數(shù)學必修2知識總結(jié)2020相關(guān)文章

2019年高中數(shù)學必修二知識點總結(jié)(復習提綱)

高中數(shù)學必修二知識點總結(jié)

2020高一數(shù)學學習方法總結(jié)大全

高中數(shù)學必修2空間幾何體知識點歸納總結(jié)

高一數(shù)學必修二公式總結(jié)全

高一數(shù)學必修二所有公式總結(jié)

高一歷史必修二知識點總結(jié)2020

高中地理必修2知識點2020總結(jié)

高中地理必修2知識點總結(jié)2020

2020高中地理必修二知識點總結(jié)

650067