學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) >

高一數(shù)學(xué)必會必考的相關(guān)知識點分析

時間: 贊銳20 分享

做好章節(jié)復(fù)習(xí)。學(xué)習(xí)一章后應(yīng)進行階段復(fù)習(xí),復(fù)習(xí)方法也同及時復(fù)習(xí)一樣,采取回憶式復(fù)習(xí),而后與書、筆記相對照,使其內(nèi)容完善,而后應(yīng)做好章節(jié)總節(jié)。以下是小編給大家整理的高一數(shù)學(xué)必會必考的相關(guān)知識點分析,希望大家能夠喜歡!

高一數(shù)學(xué)必會必考的相關(guān)知識點分析1

兩個平面的位置關(guān)系:

(1)兩個平面互相平行的定義:空間兩平面沒有公共點

(2)兩個平面的位置關(guān)系:

兩個平面平行-----沒有公共點;兩個平面相交-----有一條公共直線。

a、平行

兩個平面平行的判定定理:如果一個平面內(nèi)有兩條相交直線都平行于另一個平面,那么這兩個平面平行。

兩個平面平行的性質(zhì)定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。

b、相交

二面角

(1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

(2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

(3)二面角的棱:這一條直線叫做二面角的棱。

(4)二面角的面:這兩個半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

esp.兩平面垂直

兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

兩平面垂直的判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直

兩個平面垂直的性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于交線的直線垂直于另一個平面。

高一數(shù)學(xué)必會必考的相關(guān)知識點分析2

如果直線a與平面α平行,那么直線a與平面α內(nèi)的直線有哪些位置關(guān)系?

平行或異面。

若直線a與平面α平行,那么在平面α內(nèi)與直線a平行的直線有多少條?這些直線的位置關(guān)系如何?

答:無數(shù)條;平行。

如果直線a與平面α平行,經(jīng)過直線a的平面β與平面α相交于直線b,那么直線a、b的位置關(guān)系如何?為什么?

平行;因為a∥α,所以a與α沒有公共點,則a與b沒有公共點,又a與b在同一平面β內(nèi),所以a與b平行。

綜上分析,在直線a與平面α平行的條件下我們可以得到什么結(jié)論?

如果一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。

練習(xí)題:

1.(質(zhì)疑夯基)判斷下列結(jié)論的正誤.(正確的打“√”,錯誤的打“×”.)

(1)若一條直線和平面內(nèi)一條直線平行,那么這條直線和這個平面平行.()

(2)若直線a∥平面α,P∈α,則過點P且平行于直線a的直線有無數(shù)條.()

(3)如果一個平面內(nèi)的兩條直線平行于另一個平面,那么這兩個平面平行.()

(4)如果兩個平面平行,那么分別在這兩個平面內(nèi)的兩條直線平行或異面.()

答案:(1)×(2)×(3)×(4)√

2.下列命題中正確的是()

A.若a,b是兩條直線,且a∥b,那么a平行于經(jīng)過b的任何平面β

B.若直線a和平面α滿足a∥α,那么a與α內(nèi)的任何直線平行

C.平行于同一條直線的兩個平面平行

D.若直線a,b和平面α滿足a∥b,a∥α,b?α,則b∥α

解析:選項A中,a∥β或a?β,A不正確.

選項B中,a與α內(nèi)的直線平行或異面,B錯.

C中的兩個平面平行或相交,C不正確.

由線面平行的性質(zhì)與判定,選項D正確.

答案:D

3.設(shè)α,β是兩個不同的平面,m是直線且m?α.“m∥β”是“α∥β”的()

A.充分而不必要條件

B.必要而不充分條件

C.充分必要條件

D.既不充分也不必要條件

解析:由m?α,m∥β??α∥β.

但m?α,α∥β?m∥β,

∴“m∥β”是“α∥β”的必要不充分條件.

答案:B

高一數(shù)學(xué)必會必考的相關(guān)知識點分析3

(1)抽簽法

一般地,抽簽法就是把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本。

(抽簽法簡單易行,適用于總體中的個數(shù)不多時。當(dāng)總體中的個體數(shù)較多時,將總體攪拌均勻就比較困難,用抽簽法產(chǎn)生的樣本代表性差的可能性很大)

(2)隨機數(shù)法

隨機抽樣中,另一個經(jīng)常被采用的方法是隨機數(shù)法,即利用隨機數(shù)表、隨機數(shù)骰子或計算機產(chǎn)生的隨機數(shù)進行抽樣。

分層抽樣

簡介

分層抽樣(StratifiedRandomSampling)主要特征分層按比例抽樣,主要使用于總體中的個體有明顯差異。共同點:每個個體被抽到的概率都相等N/M。

定義

一般地,在抽樣時,將總體分成互不交叉的層,然后按照一定的比例,從各層獨立地抽取一定數(shù)量的個體,將各層取出的個體合在一起作為樣本,這種抽樣方法是一種分層抽樣(stratifiedsampling)。

整群抽樣

定義

什么是整群抽樣(Clustersampling)

整群抽樣又稱聚類抽樣。是將總體中各單位歸并成若干個互不交叉、互不重復(fù)的集合,稱之為群;然后以群為抽樣單位抽取樣本的一種抽樣方式。

應(yīng)用整群抽樣時,要求各群有較好的代表性,即群內(nèi)各單位的差異要大,群間差異要小。

優(yōu)缺點

整群抽樣的優(yōu)點是實施方便、節(jié)省經(jīng)費;

整群抽樣的缺點是往往由于不同群之間的差異較大,由此而引起的抽樣誤差往往大于簡單隨機抽樣。

實施步驟

先將總體分為i個群,然后從i個群鐘隨即抽取若干個群,對這些群內(nèi)所有個體或單元均進行調(diào)查。抽樣過程可分為以下幾個步驟:

一、確定分群的標(biāo)注

二、總體(N)分成若干個互不重疊的部分,每個部分為一群。

三、據(jù)各樣本量,確定應(yīng)該抽取的群數(shù)。

四、采用簡單隨機抽樣或系統(tǒng)抽樣方法,從i群中抽取確定的群數(shù)。

例如,調(diào)查中學(xué)生患近視眼的情況,抽某一個班做統(tǒng)計;進行產(chǎn)品檢驗;每隔8h抽1h生產(chǎn)的全部產(chǎn)品進行檢驗等。

與分層抽樣的區(qū)別

整群抽樣與分層抽樣在形式上有相似之處,但實際上差別很大。

分層抽樣要求各層之間的差異很大,層內(nèi)個體或單元差異小,而整群抽樣要求群與群之間的差異比較小,群內(nèi)個體或單元差異大;

分層抽樣的樣本是從每個層內(nèi)抽取若干單元或個體構(gòu)成,而整群抽樣則是要么整群抽取,要么整群不被抽取。

系統(tǒng)抽樣

定義

當(dāng)總體中的個體數(shù)較多時,采用簡單隨機抽樣顯得較為費事。這時,可將總體分成均衡的幾個部分,然后按照預(yù)先定出的規(guī)則,從每一部分抽取一個個體,得到所需要的樣本,這種抽樣叫做系統(tǒng)抽樣(systematicsample)。

步驟

一般地,假設(shè)要從容量為N的總體中抽取容量為n的樣本,我們可以按下列步驟進行系統(tǒng)抽樣:

(1)先將總體的N個個體編號。有時可直接利用個體自身所帶的號碼,如學(xué)號、準(zhǔn)考證號、門牌號等;

(2)確定分段間隔k,對編號進行分段。當(dāng)N/n(n是樣本容量)是整數(shù)時,取k=N/n;

(3)在第一段用簡單隨機抽樣確定第一個個體編號l(l

(4)按照一定的規(guī)則抽取樣本。通常是將l加上間隔k得到第2個個體編號(l+k),再加k得到第3個個體編號(l+2k),依次進行下去,直到獲取整個樣本。


高一數(shù)學(xué)必會必考的相關(guān)知識點分析相關(guān)文章:

高一數(shù)學(xué)知識點總結(jié)(考前必看)

高一數(shù)學(xué)知識點總結(jié)期末必備

高一數(shù)學(xué)期末必考的知識點歸納

高一數(shù)學(xué)常考知識點總結(jié)

高一數(shù)學(xué)知識點全面總結(jié)

高一數(shù)學(xué)知識點匯總大全

高一數(shù)學(xué)重點知識點公式總結(jié)

高一數(shù)學(xué)知識點總結(jié)歸納

高一數(shù)學(xué)必修一知識點匯總

高一數(shù)學(xué)知識點總結(jié)

1070745