學(xué)習(xí)啦>學(xué)習(xí)方法>備考資料>

2022數(shù)學(xué)必修五復(fù)習(xí)提綱

時(shí)間: 自暢0 分享

數(shù)學(xué)不是教出來的,是悟出來的,是自學(xué)出來的。數(shù)學(xué)不是看會(huì)的,是算會(huì)的。你是不是需要一份復(fù)習(xí)提綱呢?下面小編給大家分享一些數(shù)學(xué)必修五復(fù)習(xí)提綱,希望能夠幫助大家,歡迎閱讀!

數(shù)學(xué)必修五復(fù)習(xí)提綱

(一)、映射、函數(shù)、反函數(shù)

1、對(duì)應(yīng)、映射、函數(shù)三個(gè)概念既有共性又有區(qū)別,映射是一種特殊的對(duì)應(yīng),而函數(shù)又是一種特殊的映射.

2、對(duì)于函數(shù)的概念,應(yīng)注意如下幾點(diǎn):

(1)掌握構(gòu)成函數(shù)的三要素,會(huì)判斷兩個(gè)函數(shù)是否為同一函數(shù).

(2)掌握三種表示法——列表法、解析法、圖象法,能根實(shí)際問題尋求變量間的函數(shù)關(guān)系式,特別是會(huì)求分段函數(shù)的解析式.

(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復(fù)合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù).

3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:

(1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;

(2)由y=f(x)的解析式求出x=f-1(y);

(3)將x,y對(duì)換,得反函數(shù)的習(xí)慣表達(dá)式y(tǒng)=f-1(x),并注明定義域.

注意①:對(duì)于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起.

②熟悉的應(yīng)用,求f-1(x0)的值,合理利用這個(gè)結(jié)論,可以避免求反函數(shù)的過程,從而簡(jiǎn)化運(yùn)算.

(二)、函數(shù)的解析式與定義域

1、函數(shù)及其定義域是不可分割的整體,沒有定義域的函數(shù)是不存在的,因此,要正確地寫出函數(shù)的解析式,必須是在求出變量間的對(duì)應(yīng)法則的同時(shí),求出函數(shù)的定義域.求函數(shù)的定義域一般有三種類型:

(1)有時(shí)一個(gè)函數(shù)來自于一個(gè)實(shí)際問題,這時(shí)自變量x有實(shí)際意義,求定義域要結(jié)合實(shí)際意義考慮;

(2)已知一個(gè)函數(shù)的解析式求其定義域,只要使解析式有意義即可.如:

①分式的分母不得為零;

②偶次方根的被開方數(shù)不小于零;

③對(duì)數(shù)函數(shù)的真數(shù)必須大于零;

④指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

⑤三角函數(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等.

應(yīng)注意,一個(gè)函數(shù)的解析式由幾部分組成時(shí),定義域?yàn)楦鞑糠钟幸饬x的自變量取值的公共部分(即交集).

(3)已知一個(gè)函數(shù)的定義域,求另一個(gè)函數(shù)的定義域,主要考慮定義域的深刻含義即可.

已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時(shí)f(x)的定義域,即g(x)的值域.

2、求函數(shù)的解析式一般有四種情況

(1)根據(jù)某實(shí)際問題需建立一種函數(shù)關(guān)系時(shí),必須引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識(shí)尋求函數(shù)的解析式.

(2)有時(shí)題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法.比如函數(shù)是一次函數(shù),可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可.

(3)若題設(shè)給出復(fù)合函數(shù)f[g(x)]的表達(dá)式時(shí),可用換元法求函數(shù)f(x)的表達(dá)式,這時(shí)必須求出g(x)的值域,這相當(dāng)于求函數(shù)的定義域.

(4)若已知f(x)滿足某個(gè)等式,這個(gè)等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(-x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達(dá)式.

(三)、函數(shù)的值域與最值

1、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:

(1)直接法:亦稱觀察法,對(duì)于結(jié)構(gòu)較為簡(jiǎn)單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域.

(2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡(jiǎn)單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時(shí)用代數(shù)換元,當(dāng)根式里是二次式時(shí),用三角換元.

(3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.

(4)配方法:對(duì)于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問題可考慮用配方法.

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應(yīng)注意條件“一正二定三相等”有時(shí)需用到平方等技巧.

(6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.

(7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個(gè)定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.

(8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.

2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系

求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問的角度不同,因而答題的方式就有所相異.

如函數(shù)的值域是(0,16],值是16,無最小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無值和最小值,只有在改變函數(shù)定義域后,如x>0時(shí),函數(shù)的最小值為2.可見定義域?qū)瘮?shù)的值域或最值的影響.

3、函數(shù)的最值在實(shí)際問題中的應(yīng)用

函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識(shí)求解實(shí)際問題上,從文字表述上常常表現(xiàn)為“工程造價(jià)最低”,“利潤(rùn)”或“面積(體積)(最小)”等諸多現(xiàn)實(shí)問題上,求解時(shí)要特別關(guān)注實(shí)際意義對(duì)自變量的制約,以便能正確求得最值.

(四)、函數(shù)的奇偶性

1、函數(shù)的奇偶性的定義:對(duì)于函數(shù)f(x),如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù)).

正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點(diǎn):(1)定義域在數(shù)軸上關(guān)于原點(diǎn)對(duì)稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數(shù)定義域上的整體性質(zhì)).

2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時(shí)需要將函數(shù)化簡(jiǎn)或應(yīng)用定義的等價(jià)形式:

注意如下結(jié)論的運(yùn)用:

(1)不論f(x)是奇函數(shù)還是偶函數(shù),f(|x|)總是偶函數(shù);

(2)f(x)、g(x)分別是定義域D1、D2上的奇函數(shù),那么在D1∩D2上,f(x)+g(x)是奇函數(shù),f(x)·g(x)是偶函數(shù),類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

(3)奇偶函數(shù)的復(fù)合函數(shù)的奇偶性通常是偶函數(shù);

(4)奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù),偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)。

3、有關(guān)奇偶性的幾個(gè)性質(zhì)及結(jié)論

(1)一個(gè)函數(shù)為奇函數(shù)的充要條件是它的圖象關(guān)于原點(diǎn)對(duì)稱;一個(gè)函數(shù)為偶函數(shù)的充要條件是它的圖象關(guān)于y軸對(duì)稱.

(2)如要函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱且函數(shù)值恒為零,那么它既是奇函數(shù)又是偶函數(shù).

(3)若奇函數(shù)f(x)在x=0處有意義,則f(0)=0成立.

(4)若f(x)是具有奇偶性的區(qū)間單調(diào)函數(shù),則奇(偶)函數(shù)在正負(fù)對(duì)稱區(qū)間上的單調(diào)性是相同(反)的。

(5)若f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則F(x)=f(x)+f(-x)是偶函數(shù),G(x)=f(x)-f(-x)是奇函數(shù).

(6)奇偶性的推廣

函數(shù)y=f(x)對(duì)定義域內(nèi)的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于直線x=a對(duì)稱,即y=f(a+x)為偶函數(shù).函數(shù)y=f(x)對(duì)定義域內(nèi)的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關(guān)于點(diǎn)(a,0)成中心對(duì)稱圖形,即y=f(a+x)為奇函數(shù)。

學(xué)習(xí)數(shù)學(xué)需要注意什么

一、課內(nèi)重視聽講,課后及時(shí)復(fù)習(xí)

接受一種新的知識(shí),主要實(shí)在課堂上進(jìn)行的,所以要重視課堂上的學(xué)習(xí)效率,找到適合自己的學(xué)習(xí)方法,上課時(shí)要跟住老師的思路,積極思考。下課之后要及時(shí)復(fù)習(xí),遇到不懂的地方要及時(shí)去問,在做作業(yè)的時(shí)候,先把老師課堂上講解的內(nèi)容回想一遍,還要牢牢的掌握公式及推理過程,盡量不要去翻書。盡量自己思考,不要急于翻看答案。還要經(jīng)常性的總結(jié)和復(fù)習(xí),把知識(shí)點(diǎn)結(jié)合起來,變成自己的知識(shí)體系。

二、多做題,養(yǎng)成良好的解題習(xí)慣

要想學(xué)好數(shù)學(xué),大量做題是必可避免的,熟練地掌握各種題型,這樣才能有效的提高數(shù)學(xué)成績(jī)。剛開始做題的時(shí)候先以書上習(xí)題為主,答好基礎(chǔ),然后逐漸增加難度,開拓思路,練習(xí)各種類型的解題思路,對(duì)于容易出現(xiàn)錯(cuò)誤的題型,應(yīng)該記錄下來,反復(fù)加以聯(lián)系。在做題的時(shí)候應(yīng)該養(yǎng)成良好的解題習(xí)慣,集中注意力,這樣才能進(jìn)入最佳的狀態(tài),形成習(xí)慣,這樣在考試的時(shí)候才能運(yùn)用自如。

學(xué)數(shù)學(xué)要注意什么

第一,興趣。

如今的家庭和學(xué)校對(duì)孩子的期望很高,而且女生的性格普遍較為文靜,心理不夠強(qiáng)大,還有的就是數(shù)學(xué)這科目難度相對(duì)來說較高,很容易會(huì)導(dǎo)致女生對(duì)數(shù)學(xué)的興趣降低。

所以說,作為老師應(yīng)該多關(guān)心她們的學(xué)習(xí)情況,多與她們交流科目上的內(nèi)容,了解她們的想法,只有理解她們的想法才能有效的制定相應(yīng)的學(xué)習(xí)計(jì)劃,為她們驅(qū)除緊張的情緒,從而達(dá)到一個(gè)好的學(xué)習(xí)狀態(tài)。與此同時(shí),作為家長(zhǎng)的應(yīng)該多關(guān)心孩子的情況,不要一看到成績(jī)不好就開口訓(xùn)斥,這樣對(duì)孩子的心理會(huì)造成一定的影響,甚至可能削弱孩子對(duì)數(shù)學(xué)的興趣。我們應(yīng)該用積極的態(tài)度去對(duì)待孩子的學(xué)習(xí),女生的情感與男生不同,她們對(duì)于感興趣的,一般會(huì)更有耐心克服困難,達(dá)到自己的目標(biāo)。

第二,自信。

女生的形象思維能力一般比男生要差,邏輯思維能力也如此,所以容易造成沒有信心的現(xiàn)象。事實(shí)上,女生在運(yùn)算準(zhǔn)確率方面是很高的,也比較規(guī)范,所以我們看到女生的數(shù)學(xué)答題大都很工整,其實(shí)這是一個(gè)優(yōu)點(diǎn)。

所謂每個(gè)人都有優(yōu)缺點(diǎn),我們不應(yīng)該因?yàn)樽约旱娜秉c(diǎn)而妄自菲薄,而是應(yīng)該努力克服缺點(diǎn),增強(qiáng)自己的自信心,在學(xué)習(xí)上應(yīng)該多了解通解通法,還有一些常用的數(shù)學(xué)公式,解題技巧,還有解題速度。很多女生解數(shù)學(xué)題的速度都不快,甚至有些女生到時(shí)間了還有幾道大題沒做,這樣丟分是讓人很遺憾的。

第三,學(xué)習(xí)方法。

很多女生在學(xué)習(xí)數(shù)學(xué)的時(shí)候喜歡按部就班,注重基礎(chǔ),但是卻很少做難題,所以便導(dǎo)致了解題能力薄弱。女生上課的時(shí)候很認(rèn)真,復(fù)習(xí)的時(shí)候喜歡看筆記和書本,但是卻忽視了對(duì)自己能力的訓(xùn)練,所以導(dǎo)致了自己適應(yīng)性比較差。

所以,女生應(yīng)該從這幾點(diǎn)下手,多下功夫,對(duì)于難題我們不要害怕,但是也不能一味地做難題,適當(dāng)?shù)挠?xùn)練,對(duì)于自己的數(shù)學(xué)能力是有很大提升的。還有,女生在學(xué)習(xí)數(shù)學(xué)的時(shí)候應(yīng)該多向男生學(xué)習(xí),學(xué)習(xí)他們的一些優(yōu)秀技巧,進(jìn)而轉(zhuǎn)化為自己的學(xué)習(xí)技巧,結(jié)合在做題上,多訓(xùn)練,相信對(duì)自己的數(shù)學(xué)水平是有很大幫助的。

第四,課前預(yù)習(xí)。

正所謂“笨鳥先飛”,我們經(jīng)過預(yù)習(xí)可以提前對(duì)新內(nèi)容有一個(gè)大概的了解,從而在聽課的時(shí)候能夠有的放矢,對(duì)自己不了解的知識(shí)點(diǎn)著重注意,很可能會(huì)有奇效。而提前預(yù)習(xí),還能對(duì)女生的心理有一個(gè)暗示,對(duì)女生的信心提高也是有極大的好處。

2021數(shù)學(xué)必修五復(fù)習(xí)提綱相關(guān)文章

2020屆高三數(shù)學(xué)復(fù)習(xí)必修五知識(shí)點(diǎn)與滿分攻略

關(guān)于高一數(shù)學(xué)必修五的知識(shí)點(diǎn)

高中數(shù)學(xué)學(xué)霸提分秘籍:必修五知識(shí)點(diǎn)總結(jié)

高中數(shù)學(xué)必修5全部公式

高考數(shù)學(xué)復(fù)習(xí)攻略2021

高三數(shù)學(xué)集合復(fù)習(xí)必修五知識(shí)點(diǎn)總結(jié)

2021高三數(shù)學(xué)一輪復(fù)習(xí)攻略

高二數(shù)學(xué)上下學(xué)期知識(shí)點(diǎn)復(fù)習(xí)提綱

高一數(shù)學(xué)必修五數(shù)列知識(shí)點(diǎn)

2021七年級(jí)數(shù)學(xué)提綱

2022數(shù)學(xué)必修五復(fù)習(xí)提綱

數(shù)學(xué)不是教出來的,是悟出來的,是自學(xué)出來的。數(shù)學(xué)不是看會(huì)的,是算會(huì)的。你是不是需要一份復(fù)習(xí)提綱呢?下面小編給大家分享一些數(shù)學(xué)必修五復(fù)習(xí)提綱,希望能夠幫助大家,歡迎閱讀!數(shù)學(xué)必修五復(fù)習(xí)提綱(一)、映射、
推薦度:
點(diǎn)擊下載文檔文檔為doc格式
1077300