八年級人教版數(shù)學(xué)知識點
每一門科目都有自己的學(xué)習(xí)方法,但其實都是萬變不離其中的,數(shù)學(xué)其實和語文英語一樣,也是要記、要背、要講練的。下面是小編給大家整理的一些八年級數(shù)學(xué)的知識點,希望對大家有所幫助。
初二數(shù)學(xué)知識點
【相似、全等三角形】
1、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
2、相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)
3、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
4、判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)
5、判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)
6、定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似
7、性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比
8、性質(zhì)定理2相似三角形周長的比等于相似比
9、性質(zhì)定理3相似三角形面積的比等于相似比的平方
10、邊角邊公理有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等
11、角邊角公理有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等
12、推論有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等
13、邊邊邊公理有三邊對應(yīng)相等的兩個三角形全等
14、斜邊、直角邊公理有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等
15、全等三角形的對應(yīng)邊、對應(yīng)角相等
【等腰、直角三角形】
1、等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等
2、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
3、等腰三角形的頂角平分線、底邊上的中線和高互相重合
4、推論3等邊三角形的各角都相等,并且每一個角都等于60°
5、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
6、推論1三個角都相等的三角形是等邊三角形
7、推論2有一個角等于60°的等腰三角形是等邊三角形
8、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
9、直角三角形斜邊上的中線等于斜邊上的一半
初二數(shù)學(xué)知識點歸納
定義:若兩條直線互相平行,則其中一條直線上任意兩點到另一條直線的距離相等,這個距離稱為平行線之間的距離。
平行四邊形:兩組對邊分別平行的四邊形.。對邊相等,對角相等,對角線互相平分。兩組對邊分別平行的四邊形是平行四邊形,兩組對邊分別相等的四邊形是平行四邊形,兩條對角線互相平分的四邊形是平行四邊形,一組對邊平行且相等的四邊形是平行四邊形
菱形:一組鄰邊相等的平行四邊形??(平行四邊形的性質(zhì))。四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。一組鄰邊相等的平行四邊形是菱形,對角線互相垂直的平行四邊形是菱形,四條邊都相等的四邊形是菱形。
矩形:有一個內(nèi)角是直角的平行四邊形??(平行四邊形的性質(zhì))。對角線相等,四個角都是直角。有一個內(nèi)角是直角的平行四邊形是矩形,對角線相等的平行四邊形是矩形。
正方形:一組鄰邊相等的矩形。正方形具有平行四邊形、菱形、矩形的一切性質(zhì)。一組鄰邊相等的矩形是正方形,一個內(nèi)角是直角的菱形是正方形。
梯形:一組對邊平行而另一組對邊不平行的四邊形。一組對邊平行而另一組對邊不平行的四邊形是梯形。等腰梯形:兩條腰相等的梯形。同一底上的兩個內(nèi)角相等,對角線相等。兩腰相等的梯形是等腰梯形,同一底上兩個內(nèi)角相等的梯形是等腰梯形。
直角梯形:一條腰和底垂直的梯形。一條腰和底垂直的梯形是直角梯形。
多邊形:在平面內(nèi),由若干條不在同一條直線上的線段首尾順次相連組成的封閉圖形叫做多邊形。n邊形的內(nèi)角和等于(n-2)×180
多邊形內(nèi)角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角。多邊形的外角和都等于360°。三角形、四邊形和六邊形都可以密鋪。
定義:在平面內(nèi),一個圖形繞某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。
中心對稱圖形上的每一對對應(yīng)點所連成的線段都被對稱中心平分。
八年級數(shù)學(xué)學(xué)習(xí)方法技巧
“對應(yīng)”的思想
“對應(yīng)”的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應(yīng)一個抽象的數(shù)“1”,將兩只眼睛、一對耳環(huán)、雙胞胎對應(yīng)一個抽象的數(shù)“2”;隨著學(xué)習(xí)的深入,我們還將“對應(yīng)”擴(kuò)展到對應(yīng)一種形式,對應(yīng)一種關(guān)系,等等。比如我們在計算或化簡中,將對應(yīng)公式的左邊,對應(yīng)a,y對應(yīng)b,再利用公式的右邊直接得出原式的結(jié)果即。
自學(xué)能力的培養(yǎng)是深化學(xué)習(xí)的必由之路
在學(xué)習(xí)新概念、新運(yùn)算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂“溫故而知新”。因此說,數(shù)學(xué)是一門能自學(xué)的學(xué)科,自學(xué)成才最典型的例子就是數(shù)學(xué)家華羅庚。
我們在課堂上聽老師講解,不光是學(xué)習(xí)新知識,更重要的是潛移默化老師的那種數(shù)學(xué)思維習(xí)慣,逐漸地培養(yǎng)起自己對數(shù)學(xué)的一種悟性。
自學(xué)能力越強(qiáng),悟性就越高。隨著年齡的增長,同學(xué)們的依賴性應(yīng)不斷減弱,而自學(xué)能力則應(yīng)不斷增強(qiáng)。因此,要養(yǎng)成預(yù)習(xí)的習(xí)慣。
因此,以前的數(shù)學(xué)學(xué)得扎實,就為以后的進(jìn)取奠定了基礎(chǔ),就不難自學(xué)新課。同時,在預(yù)習(xí)新課時,碰到什么自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。
學(xué)來學(xué)去,知識還是別人的。檢驗數(shù)學(xué)學(xué)得好不好的標(biāo)準(zhǔn)就是會不會解題。聽懂并記憶有關(guān)的定義、法則、公式、定理,只是學(xué)好數(shù)學(xué)的必要條件,能獨立解題、解對題才是學(xué)好數(shù)學(xué)的標(biāo)志。
自信才能自強(qiáng)
在考試中,總是看見有些同學(xué)的試卷出現(xiàn)許多空白,即有好幾題根本沒有動手去做。當(dāng)然,俗話說,藝高膽大,藝不高就膽不大。但是,做不出是一回事,沒有去做則是另一回事。稍為難一點的數(shù)學(xué)題都不是一眼就能看出它的解法和結(jié)果的。要去分析、探索、比比畫畫、寫寫算算,經(jīng)過迂回曲折的推理或演算,才顯露出條件和結(jié)論之間的某種聯(lián)系,整個思路才會明朗清晰起來。
具體解題時,一定要認(rèn)真審題,緊緊抓住題目的所有條件不放,不要忽略了任何一個條件。一道題和一類題之間有一定的共性,可以想想這一類題的一般思路和一般解法,但更重要的是抓住這一道題的特殊性,抓住這一道題與這一類題不同的地方。數(shù)學(xué)的題目幾乎沒有相同的,總有一個或幾個條件不盡相同,因此思路和解題過程也不盡相同。有些同學(xué)老師講過的題會做,其它的題就不會做,只會依樣畫瓢,題目有些小的變化就干瞪眼,無從下手。
數(shù)學(xué)題目是無限的,但數(shù)學(xué)的思想和方法卻是有限的。我們只要學(xué)好了有關(guān)的基礎(chǔ)知識,掌握了必要的數(shù)學(xué)思想和方法,就能順利地對付那無限的題目。題目并不是做得越多越好,題海無邊,總也做不完。關(guān)鍵是你有沒有培養(yǎng)起良好的數(shù)學(xué)思維習(xí)慣,有沒有掌握正確的數(shù)學(xué)解題方法。
解題需要豐富的知識,更需要自信心。沒有自信就會畏難,就會放棄;只有自信,才能勇往直前,才不會輕言放棄,才會加倍努力地學(xué)習(xí),才有希望攻克難關(guān),迎來屬于自己的春天。
八年級人教版數(shù)學(xué)知識點相關(guān)文章: