學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>初二學(xué)習(xí)方法>八年級數(shù)學(xué)>

八年級數(shù)學(xué)單元知識點

時間: 躍瀚0 分享

學(xué)習(xí)從來無捷徑。每一門科目都有自己的學(xué)習(xí)方法,但其實都是萬變不離其中的,數(shù)學(xué)作為主科之一,和語文英語一樣,也是要記、要背、要講練的。下面是小編給大家整理的一些八年級數(shù)學(xué)的知識點,希望對大家有所幫助。

初二上學(xué)期數(shù)學(xué)知識點歸納

一、勾股定理

1、勾股定理

直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。

2、勾股定理的逆定理

如果三角形的三邊長a,b,c有這種關(guān)系,那么這個三角形是直角三角形。

3、勾股數(shù)

滿足的三個正整數(shù),稱為勾股數(shù)。

常見的勾股數(shù)組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數(shù)組的倍數(shù)仍是勾股數(shù))。

二、證明

1、對事情作出判斷的句子,就叫做命題。即:命題是判斷一件事情的句子。

2、三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180度。

(1)證明三角形內(nèi)角和定理的思路是將原三角形中的三個角湊到一起組成一個平角。一般需要作輔助。

(2)三角形的外角與它相鄰的內(nèi)角是互為補(bǔ)角。

3、三角形的外角與它不相鄰的內(nèi)角關(guān)系

(1)三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。

(2)三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。

4、證明一個命題是真命題的基本步驟

(1)根據(jù)題意,畫出圖形。

(2)根據(jù)條件、結(jié)論,結(jié)合圖形,寫出已知、求證。

(3)經(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程。在證明時需注意:①在一般情況下,分析的過程不要求寫出來。②證明中的每一步推理都要有根據(jù)。如果兩條直線都和第三條直線平行,那么這兩條直線也相互平行。

八年級上冊數(shù)學(xué)知識點滬科版

(一)運用公式法

我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。

(二)平方差公式

平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)語言:兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積。這個公式就是平方差公式。

(三)因式分解

1.因式分解時,各項如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。

2.因式分解,必須進(jìn)行到每一個多項式因式不能再分解為止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方。

把a(bǔ)2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。

上面兩個公式叫完全平方公式。

(2)完全平方式的形式和特點

①項數(shù):三項

②有兩項是兩個數(shù)的的平方和,這兩項的符號相同。

③有一項是這兩個數(shù)的積的兩倍。

(3)當(dāng)多項式中有公因式時,應(yīng)該先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。

(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。

初二下冊數(shù)學(xué)知識點歸納

第一章分式

1、分式及其基本性質(zhì)分式的分子和分母同時乘以(或除以)一個不等于零的整式,分式的只不變

2、分式的運算

(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。

(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變?yōu)橥帜傅姆质?,再加減

3、整數(shù)指數(shù)冪的加減乘除法

4、分式方程及其解法

第二章反比例函數(shù)

1、反比例函數(shù)的表達(dá)式、圖像、性質(zhì)

圖像:雙曲線

表達(dá)式:y=k/x(k不為0)

性質(zhì):兩支的增減性相同;

2、反比例函數(shù)在實際問題中的應(yīng)用

第三章勾股定理

1、勾股定理:直角三角形的兩個直角邊的平方和等于斜邊的平方

2、勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等于第三條邊的平方,那么這個三角形是直角三角形。

第四章四邊形

1、平行四邊形

性質(zhì):對邊相等;對角相等;對角線互相平分。

判定:兩組對邊分別相等的四邊形是平行四邊形;

兩組對角分別相等的四邊形是平行四邊形;

對角線互相平分的四邊形是平行四邊形;

一組對邊平行而且相等的四邊形是平行四邊形。

推論:三角形的中位線平行第三邊,并且等于第三邊的一半。

2、特殊的平行四邊形:矩形、菱形、正方形

(1)矩形

性質(zhì):矩形的四個角都是直角;

矩形的對角線相等;

矩形具有平行四邊形的所有性質(zhì)

判定:有一個角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形;

推論:直角三角形斜邊的中線等于斜邊的一半。

(2)菱形性質(zhì):菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形具有平行四邊形的一切性質(zhì)

判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。

(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì)。

3、梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等;同一個底上的兩個角相等的梯形是等腰梯形。

第五章數(shù)據(jù)的分析

加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差

八年級數(shù)學(xué)單元知識點相關(guān)文章

人教版八年級數(shù)學(xué)上冊知識點總結(jié)

八年級上冊數(shù)學(xué)第一單元知識點

八年級數(shù)學(xué)上冊知識點歸納

八年級數(shù)學(xué)知識點整理歸納

新人教版八年級數(shù)學(xué)知識點

初二數(shù)學(xué)上冊知識點總結(jié)

八年級下冊數(shù)學(xué)知識點整理

初二數(shù)學(xué)知識點復(fù)習(xí)整理

八年級數(shù)學(xué)重要知識點

八年級數(shù)學(xué)知識點總結(jié)

八年級數(shù)學(xué)單元知識點

學(xué)習(xí)從來無捷徑。每一門科目都有自己的學(xué)習(xí)方法,但其實都是萬變不離其中的,數(shù)學(xué)作為主科之一,和語文英語一樣,也是要記、要背、要講練的。下面是小編給大家整理的一些八年級數(shù)學(xué)的知識點,希望對大家有所幫助。初
推薦度:
點擊下載文檔文檔為doc格式

精選文章

  • 八年級數(shù)學(xué)主要知識點
    八年級數(shù)學(xué)主要知識點

    學(xué)習(xí)從來無捷徑。每一門科目都有自己的學(xué)習(xí)方法,但其實都是萬變不離其中的,數(shù)學(xué)作為主科之一,和語文英語一樣,也是要記、要背、要講練的。下面

  • 滬教版八年級數(shù)學(xué)知識點
    滬教版八年級數(shù)學(xué)知識點

    知識是一座寶庫,而實踐就是開啟寶庫的鑰匙。學(xué)習(xí)任何學(xué)科,不僅需要大量的記憶,還需要大量的練習(xí),從而達(dá)到鞏固知識的效果。下面是小編給大家整

  • 初二數(shù)學(xué)的知識點2021
    初二數(shù)學(xué)的知識點2021

    知識是取之不盡,用之不竭的。只有限度地挖掘它,才能體會到學(xué)習(xí)的樂趣。任何一門學(xué)科的知識都需要大量的記憶和練習(xí)來鞏固。雖然辛苦,但也伴隨著

  • 八年級數(shù)學(xué)知識點華師大版
    八年級數(shù)學(xué)知識點華師大版

    天才就是勤奮曾經(jīng)有人這樣說過。如果這話不完全正確,那至少在很大程度上是正確的。學(xué)習(xí),就算是天才,也是需要不斷練習(xí)與記憶的。下面是小編給大

1134595