學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初二學(xué)習(xí)方法 > 八年級(jí)數(shù)學(xué) >

八年級(jí)北師大版數(shù)學(xué)知識(shí)點(diǎn)

時(shí)間: 躍瀚21373 分享

學(xué)習(xí)這件事不在乎有沒有人教你,最重要的是在于你自己有沒有覺悟和恒心。任何科目學(xué)習(xí)方法其實(shí)都是一樣的,不斷的記憶與練習(xí),使知識(shí)刻在腦海里。下面是小編給大家整理的一些八年級(jí)數(shù)學(xué)的知識(shí)點(diǎn),希望對(duì)大家有所幫助。

八年級(jí)北師大版數(shù)學(xué)知識(shí)點(diǎn)

初二上學(xué)期數(shù)學(xué)知識(shí)點(diǎn)歸納

分式方程

一、理解定義

1、分式方程:含分式,并且分母中含未知數(shù)的方程——分式方程。

2、解分式方程的思路是:

(1)在方程的兩邊都乘以最簡(jiǎn)公分母,約去分母,化成整式方程。

(2)解這個(gè)整式方程。

(3)把整式方程的根帶入最簡(jiǎn)公分母,看結(jié)果是不是為零,使最簡(jiǎn)公分母為零的根是原方程的增根,必須舍去。

(4)寫出原方程的根。

“一化二解三檢驗(yàn)四總結(jié)”

3、增根:分式方程的增根必須滿足兩個(gè)條件:

(1)增根是最簡(jiǎn)公分母為0;(2)增根是分式方程化成的整式方程的.根。

4、分式方程的解法:

(1)能化簡(jiǎn)的先化簡(jiǎn)(2)方程兩邊同乘以最簡(jiǎn)公分母,化為整式方程;

(3)解整式方程;(4)驗(yàn)根;

注:解分式方程時(shí),方程兩邊同乘以最簡(jiǎn)公分母時(shí),最簡(jiǎn)公分母有可能為0,這樣就產(chǎn)生了增根,因此分式方程一定要驗(yàn)根。

分式方程檢驗(yàn)方法:將整式方程的解帶入最簡(jiǎn)公分母,如果最簡(jiǎn)公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個(gè)解不是原分式方程的解。

5、分式方程解實(shí)際問題

步驟:審題—設(shè)未知數(shù)—列方程—解方程—檢驗(yàn)—寫出答案,檢驗(yàn)時(shí)要注意從方程本身和實(shí)際問題兩個(gè)方面進(jìn)行檢驗(yàn)。

初二下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納北師大版

第一章分式

1、分式及其基本性質(zhì)分式的分子和分母同時(shí)乘以(或除以)一個(gè)不等于零的整式,分式的只不變

2、分式的運(yùn)算

(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。

(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變?yōu)橥帜傅姆质?,再加減

3、整數(shù)指數(shù)冪的加減乘除法

4、分式方程及其解法

第二章反比例函數(shù)

1、反比例函數(shù)的表達(dá)式、圖像、性質(zhì)

圖像:雙曲線

表達(dá)式:y=k/x(k不為0)

性質(zhì):兩支的增減性相同;

2、反比例函數(shù)在實(shí)際問題中的應(yīng)用

第三章勾股定理

1、勾股定理:直角三角形的兩個(gè)直角邊的平方和等于斜邊的平方

2、勾股定理的逆定理:如果一個(gè)三角形中,有兩個(gè)邊的平方和等于第三條邊的平方,那么這個(gè)三角形是直角三角形。

第四章四邊形

1、平行四邊形

性質(zhì):對(duì)邊相等;對(duì)角相等;對(duì)角線互相平分。

判定:兩組對(duì)邊分別相等的四邊形是平行四邊形;

兩組對(duì)角分別相等的四邊形是平行四邊形;

對(duì)角線互相平分的四邊形是平行四邊形;

一組對(duì)邊平行而且相等的四邊形是平行四邊形。

推論:三角形的中位線平行第三邊,并且等于第三邊的一半。

2、特殊的平行四邊形:矩形、菱形、正方形

(1)矩形

性質(zhì):矩形的四個(gè)角都是直角;

矩形的對(duì)角線相等;

矩形具有平行四邊形的所有性質(zhì)

判定:有一個(gè)角是直角的平行四邊形是矩形;對(duì)角線相等的平行四邊形是矩形;

推論:直角三角形斜邊的中線等于斜邊的一半。

(2)菱形性質(zhì):菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形具有平行四邊形的一切性質(zhì)

判定:有一組鄰邊相等的平行四邊形是菱形;對(duì)角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。

(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì)。

3、梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底邊上的兩個(gè)角相等;等腰梯形的兩條對(duì)角線相等;同一個(gè)底上的兩個(gè)角相等的梯形是等腰梯形。

第五章數(shù)據(jù)的分析

加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差

初二數(shù)學(xué)三角形知識(shí)點(diǎn)歸納

【直角三角形】

◆備考兵法

1.正確區(qū)分勾股定理與其逆定理,掌握常用的勾股數(shù).

2.在解決直角三角形的有關(guān)問題時(shí),應(yīng)注意以勾股定理為橋梁建立方程(組)來解決問題,實(shí)現(xiàn)幾何問題代數(shù)化.

3.在解決直角三角形的相關(guān)問題時(shí),要注意題中是否含有特殊角(30°,45°,60°).若有,則應(yīng)運(yùn)用一些相關(guān)的特殊性質(zhì)解題.

4.在解決許多非直角三角形的計(jì)算與證明問題時(shí),常常通過作高轉(zhuǎn)化為直角三角形來解決.

5.折疊問題是新中考熱點(diǎn)之一,在處理折疊問題時(shí),動(dòng)手操作,認(rèn)真觀察,充分發(fā)揮空間想象力,注意折疊過程中,線段,角發(fā)生的變化,尋找破題思路.

【三角形的重心】

已知:△ABC中,D為BC中點(diǎn),E為AC中點(diǎn),AD與BE交于O,CO延長(zhǎng)線交AB于F。求證:F為AB中點(diǎn)。

證明:根據(jù)燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再應(yīng)用燕尾定理即得AF=BF,命題得證。

重心的幾條性質(zhì):

1.重心和三角形3個(gè)頂點(diǎn)組成的3個(gè)三角形面積相等。

2.重心到三角形3個(gè)頂點(diǎn)距離的平方和最小。

3.在平面直角坐標(biāo)系中,重心的坐標(biāo)是頂點(diǎn)坐標(biāo)的算術(shù)平均,即其坐標(biāo)為((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空間直角坐標(biāo)系——橫坐標(biāo):(X1+X2+X3)/3縱坐標(biāo):(Y1+Y2+Y3)/3豎坐標(biāo):(Z1+Z2+Z3)/3

4重心到頂點(diǎn)的距離與重心到對(duì)邊中點(diǎn)的距離之比為2:1。

5.重心是三角形內(nèi)到三邊距離之積的點(diǎn)。

如果用塞瓦定理證,則極易證三條中線交于一點(diǎn)。


八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)北師大版相關(guān)文章:

八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)北師大版

北師大版八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)

北師大版八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)

北師大初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)

初二數(shù)學(xué)知識(shí)點(diǎn)北師大版

北師大初中數(shù)學(xué)知識(shí)點(diǎn)八年級(jí)上

北師大版初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)歸納

北師大版八年級(jí)數(shù)學(xué)下冊(cè)復(fù)習(xí)提綱

北師大版初中數(shù)學(xué)知識(shí)點(diǎn)提綱

初中八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)整理

1198058