八年級數(shù)學(xué)下冊知識點整理
學(xué)習(xí)知識要善于思考,思考,再思考。每一門科目都有自己的學(xué)習(xí)方法,但其實都是萬變不離其中的,數(shù)學(xué)作為最燒腦的科目之一,也是要記、要背、要講練的。下面是小編給大家整理的一些八年級數(shù)學(xué)的知識點,希望對大家有所幫助。
數(shù)學(xué)八年級知識點歸納下冊
公式與性質(zhì):
(1)三角形的內(nèi)角和:三角形的內(nèi)角和為180°
(2)三角形外角的性質(zhì):
性質(zhì)1:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。
性質(zhì)2:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。
(3)多邊形內(nèi)角和公式:邊形的內(nèi)角和等于?180°
(4)多邊形的外角和:多邊形的外角和為360°
(5)多邊形對角線的條數(shù):①從邊形的一個頂點出發(fā)可以引條對角線,把多邊形分成個三角形。②邊形共有條對角線。
位置與坐標(biāo)
1、確定位置
在平面內(nèi),確定一個物體的位置一般需要兩個數(shù)據(jù)。
2、平面直角坐標(biāo)系
①含義:在平面內(nèi),兩條互相垂直且有公共原點的數(shù)軸組成平面直角坐標(biāo)系。
②通常地,兩條數(shù)軸分別置于水平位置與豎直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或者橫軸,豎直的數(shù)軸叫y軸和縱軸,二者統(tǒng)稱為坐標(biāo)軸,它們的公共原點o被稱為直角坐標(biāo)系的原點。
③建立了平面直角坐標(biāo)系,平面內(nèi)的點就可以用一組有序?qū)崝?shù)對來表示。
④在平面直角坐標(biāo)系中,兩條坐標(biāo)軸將坐標(biāo)平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標(biāo)軸上的點不在任何一個象限。
⑤在直角坐標(biāo)系中,對于平面上任意一點,都有的一個有序?qū)崝?shù)對(即點的坐標(biāo))與它對應(yīng);反過來,對于任意一個有序?qū)崝?shù)對,都有平面上的一點與它對應(yīng)。
八年級數(shù)學(xué)知識點滬科版
分?jǐn)?shù)的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來.
2.通分和約分都是依據(jù)分式的基本性質(zhì)進行變形,其共同點是保持分式的值不變.
3.一般地,通分結(jié)果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準(zhǔn)備.
4.通分的依據(jù):分式的基本性質(zhì).
5.通分的關(guān)鍵:確定幾個分式的公分母.
通常取各分母的所有因式的次冪的積作公分母,這樣的公分母叫做最簡公分母.
6.類比分?jǐn)?shù)的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉(zhuǎn)化為整式運算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质?,然后再加減.
9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括號.
10.對于整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.
11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運算簡化.
12.作為最后結(jié)果,如果是分式則應(yīng)該是最簡分式.
初二下冊數(shù)學(xué)知識點歸納北師大版
第一章一元一次不等式和一元一次不等式組
一、不等關(guān)系
1、一般地,用符號"<"(或"≤"),">"(或"≥")連接的式子叫做不等式.
2、要區(qū)別方程與不等式:方程表示的是相等的關(guān)系;不等式表示的是不相等的關(guān)系.
3、準(zhǔn)確"翻譯"不等式,正確理解"非負(fù)數(shù)"、"不小于"等數(shù)學(xué)術(shù)語.
非負(fù)數(shù)<===>大于等于0(≥0)<===>0和正數(shù)<===>不小于0
非正數(shù)<===>小于等于0(≤0)<===>0和負(fù)數(shù)<===>不大于0
二、不等式的基本性質(zhì)
1、掌握不等式的基本性質(zhì),并會靈活運用:
(1)不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:
如果a>b,那么a+c>b+c,a-c>b-c.
(2)不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變,即
如果a>b,并且c>0,那么ac>bc,.
(3)不等式的兩邊都乘以(或除以)同一個負(fù)數(shù),不等號的方向改變,即:
如果a>b,并且c<0,那么ac
2、比較大小:(a、b分別表示兩個實數(shù)或整式)
一般地:
如果a>b,那么a-b是正數(shù);反過來,如果a-b是正數(shù),那么a>b;
如果a=b,那么a-b等于0;反過來,如果a-b等于0,那么a=b;
如果a
即:
a>b<===>a-b>0
a=b<===>a-b=0
aa-b<0
(由此可見,要比較兩個實數(shù)的大小,只要考察它們的差就可以了.
八年級數(shù)學(xué)下冊知識點整理相關(guān)文章:
★ 初二數(shù)學(xué)下冊知識點歸納與數(shù)學(xué)學(xué)習(xí)方法
★ 八年級下冊數(shù)學(xué)知識點總結(jié)歸納
★ 八年級下冊數(shù)學(xué)知識點總復(fù)習(xí)