蘇教版全等三角形教案(2)
蘇教版全等三角形教案(二)
【教學目標】
知識與技能:理解三角形全等的條件:角邊角、角角邊.三角形全等條件小結(jié).掌握三角形全等的“角邊角”“角角邊”條件.能運用全等三角形的條件,解決簡單的推理證明問題.
過程與方法:經(jīng)歷探究全等三角形條件的過程,進一步體會操作、歸納獲得數(shù)學規(guī)律的過程.掌握三角形全等的“角邊角”“角角邊”條件.能運用全等三角形的條件,解決簡單的推理證明問題.
情感態(tài)度與價值觀:通過畫圖、探究、歸納、交流,使學生獲得一些研究問題的經(jīng)驗和方法,發(fā)展實踐能力和創(chuàng)新精神
教學重點:已知兩角一邊的三角形全等探究.
教學難點:靈活運用三角形全等條件證明.
教學方法:采用啟發(fā)誘導,實例探究,講練結(jié)合,小組合作等方法。
學情分析:這節(jié)課是學了全等三角形的邊邊邊、邊角邊后的一節(jié)課、有全面的學習經(jīng)驗、探討出 角邊角(ASA) 角角邊(AAS)學生一定能理解。
課前準備 全等三角形紙片、三角板、
【教學過程】
一、創(chuàng)設(shè)情境,導入新課
1.復習:(1)三角形中已知三個元素,包括哪幾種情況?
三個角、三個邊、兩邊一角、兩角一邊.
(2)到目前為止,可以作為判別兩三角形全等的方法有幾種?各是什么?
三種:①定義;②SSS;③SAS.
2.[師]在三角形中,已知三個元素的四種情況中,我們研究了三種,今天我們接著探究已知兩角一邊是否可以判斷兩三角形全等呢?
二 、探究
[師]三角形中已知兩角一邊有幾種可能?
[生]1.兩角和它們的夾邊.
2.兩角和其中一角的對邊.
做一做:
三角形的兩個內(nèi)角分別是60°和80°,它們的夾邊為4cm,你能畫一個三角形同時滿足這些條件嗎?將你畫的三角形剪下,與同伴比較,觀察它們是不是全等,你能得出什么規(guī)律?
學生活動:自己動手操作,然后與同伴交流,發(fā)現(xiàn)規(guī)律.
教師活動:檢查指導,幫助有困難的同學.
活動結(jié)果展示:
以小組為單位將所得三角形重疊在一起,發(fā)現(xiàn)完全重合,這說明這些三角形全等.
規(guī)律:
兩角和它們的夾邊對應(yīng)相等的兩個三角形全等(可以簡寫成“角邊角”或“ASA”).
[師]我們剛才做的三角形是一個特殊三角形,隨意畫一個三角形ABC,能不能作一個△A/B/C/,使∠A=∠A/、∠B=∠B/、AB= A/B/呢?
[生]能.
學生口述畫法,教師進行多媒體課件演示,使學生加深對“ASA”的理解.
[生]①先用量角器量出∠A與∠B的度數(shù),再用直尺量出AB的邊長.
②畫線段A/B/,使A/B/=AB.
③分別以A/、B/為頂點,A/B/為一邊作∠D A/B/、∠EB/A,使∠D/AB=∠CAB,∠EB/A/=∠CBA.
④射線A/D與B/E交于一點,記為C/
即可得到△A/B/C′.
將△A/B/C′與△ABC重疊,發(fā)現(xiàn)兩三角形全等.
[師]于是我們發(fā)現(xiàn)規(guī)律:
兩角和它們的夾邊對應(yīng)相等的兩三角形全等(可以簡寫成“角邊角”或“ASA”).
這又是一個判定三角形全等的條件. [生]在一個三角形中兩角確定,第三個角一定確定.我們是不是可以不作圖,用“ASA”推出“兩角和其中一角的對邊對應(yīng)相等的兩三角形全等”呢?
[師]你提出的問題很好.溫故而知新嘛,請同學們來驗證這種想法.
三、練習
如圖,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC與△DEF全等嗎?能利用角邊角條件證明你的結(jié)論嗎?
證明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°
∠A=∠D,∠B=∠E
∴∠A+∠B=∠D+∠E
∴∠C=∠F
在△ABC和△DEF中
∴△ABC≌△DEF(ASA).
于是得規(guī)律:
兩個角和其中一角的對邊對應(yīng)相等的兩個三角形全等(可以簡寫成“角角邊”或“AAS”).
四、例題
[例]如下圖,D在AB上,E在AC上,AB=AC,∠B=∠C.
求證:AD=AE.
[師生共析]AD和AE分別在△ADC和△AEB中,所以要證AD=AE,只需證明△ADC≌△AEB即可.
學生寫出證明過程.
證明:在△ADC和△AEB中
所以△ADC≌△AEB(ASA)
所以AD=AE.
[師]請同學們把三角形全等的判定方法做一個小結(jié).
學生活動:自我回憶總結(jié),然后小組討論交流、補充.
有五種判定三角形全等的條件.
1.全等三角形的定義
2.邊邊邊(SSS)
3.邊角邊(SAS)
4.角邊角(ASA)
5.角角邊(AAS)
推證兩三角形全等,要學會聯(lián)系思考其條件,找它們對應(yīng)相等的元素,這樣有利于獲得解題途徑.
練習:圖中的兩個三角形全等嗎?請說明理由.
五、課堂小結(jié)
我們有五種判定三角形全等的方法:
1.全等三角形的定義
2.判定定理:邊邊邊(SSS) 邊角邊(SAS) 角邊角(ASA) 角角邊(AAS)
六、布置作業(yè)
必做題:課本P44頁習題12.2中的第6,選做題:第11題
七、板書設(shè)計
猜你感興趣的: