學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高三學(xué)習(xí)方法>高三數(shù)學(xué)>

高考數(shù)學(xué)函數(shù)知識(shí)點(diǎn)匯總2020

時(shí)間: 巧綿0 分享

高中數(shù)學(xué)的知識(shí)點(diǎn)有很多,高考數(shù)學(xué)要想那高分就對(duì)知識(shí)點(diǎn)進(jìn)行總結(jié),下面就是小編給大家?guī)?lái)的高考數(shù)學(xué)知識(shí)點(diǎn)匯總2020,希望大家喜歡!

集合

一、集合概念

(1)集合中元素的特征:確定性,互異性,無(wú)序性。

(2)集合與元素的關(guān)系用符號(hào)=表示。

(3)常用數(shù)集的符號(hào)表示:自然數(shù)集;正整數(shù)集;整數(shù)集;有理數(shù)集、實(shí)數(shù)集。

(4)集合的表示法:列舉法,描述法,韋恩圖。

(5)空集是指不含任何元素的集合。

空集是任何集合的子集,是任何非空集合的真子集。

函數(shù)

一、映射與函數(shù):

(1)映射的概念:(2)一一映射:(3)函數(shù)的概念:

二、函數(shù)的三要素:

相同函數(shù)的判斷方法:①對(duì)應(yīng)法則;②定義域(兩點(diǎn)必須同時(shí)具備)

(1)函數(shù)解析式的求法:

①定義法(拼湊):②換元法:③待定系數(shù)法:④賦值法:

(2)函數(shù)定義域的求法:

①含參問(wèn)題的定義域要分類討論;

②對(duì)于實(shí)際問(wèn)題,在求出函數(shù)解析式后;必須求出其定義域,此時(shí)的定義域要根據(jù)實(shí)際意義來(lái)確定。

(3)函數(shù)值域的求法:

①配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來(lái)求值;常轉(zhuǎn)化為型如:的形式;

②逆求法(反求法):通過(guò)反解,用來(lái)表示,再由的取值范圍,通過(guò)解不等式,得出的取值范圍;常用來(lái)解,型如:;

④換元法:通過(guò)變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;

⑤三角有界法:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運(yùn)用三角函數(shù)有界性來(lái)求值域;

⑥基本不等式法:轉(zhuǎn)化成型如:,利用平均值不等式公式來(lái)求值域;

⑦單調(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。

五、反函數(shù):

(1)定義:

(2)函數(shù)存在反函數(shù)的條件:

(3)互為反函數(shù)的定義域與值域的關(guān)系:

(4)求反函數(shù)的步驟:①將看成關(guān)于的方程,解出,若有兩解,要注意解的選擇;②將互換,得;③寫出反函數(shù)的定義域(即的值域)。

(5)互為反函數(shù)的圖象間的關(guān)系:

(6)原函數(shù)與反函數(shù)具有相同的單調(diào)性;

(7)原函數(shù)為奇函數(shù),則其反函數(shù)仍為奇函數(shù);原函數(shù)為偶函數(shù),它一定不存在反函數(shù)。

七、常用的初等函數(shù):

(1)一元一次函數(shù):

(2)一元二次函數(shù):

一般式

兩點(diǎn)式

頂點(diǎn)式

二次函數(shù)求最值問(wèn)題:首先要采用配方法,化為一般式,

有三個(gè)類型題型:

(1)頂點(diǎn)固定,區(qū)間也固定。如:

(2)頂點(diǎn)含參數(shù)(即頂點(diǎn)變動(dòng)),區(qū)間固定,這時(shí)要討論頂點(diǎn)橫坐標(biāo)何時(shí)在區(qū)間之內(nèi),何時(shí)在區(qū)間之外。

(3)頂點(diǎn)固定,區(qū)間變動(dòng),這時(shí)要討論區(qū)間中的參數(shù).

等價(jià)命題在區(qū)間上有兩根在區(qū)間上有兩根在區(qū)間或上有一根

注意:若在閉區(qū)間討論方程有實(shí)數(shù)解的情況,可先利用在開(kāi)區(qū)間上實(shí)根分布的情況,得出結(jié)果,在令和檢查端點(diǎn)的情況。

(3)反比例函數(shù):

(4)指數(shù)函數(shù):

指數(shù)函數(shù):y=(a>o,a≠1),圖象恒過(guò)點(diǎn)(0,1),單調(diào)性與a的值有關(guān),在解題中,往往要對(duì)a分a>1和0

(5)對(duì)數(shù)函數(shù):

對(duì)數(shù)函數(shù):y=(a>o,a≠1)圖象恒過(guò)點(diǎn)(1,0),單調(diào)性與a的值有關(guān),在解題中,往往要對(duì)a分a>1和0

注意:

(1)比較兩個(gè)指數(shù)或?qū)?shù)的大小的基本方法是構(gòu)造相應(yīng)的指數(shù)或?qū)?shù)函數(shù),若底數(shù)不相同時(shí)轉(zhuǎn)化為同底數(shù)的指數(shù)或?qū)?shù),還要注意與1比較或與0比較。

⑧數(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來(lái)求值域。

三、函數(shù)的性質(zhì):

函數(shù)的單調(diào)性、奇偶性、周期性

單調(diào)性:定義:注意定義是相對(duì)與某個(gè)具體的區(qū)間而言。

判定方法有:定義法(作差比較和作商比較)

導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))

復(fù)合函數(shù)法和圖像法。

應(yīng)用:比較大小,證明不等式,解不等式。

奇偶性:定義:注意區(qū)間是否關(guān)于原點(diǎn)對(duì)稱,比較f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);

f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。

判別方法:定義法,圖像法,復(fù)合函數(shù)法

應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。

周期性:定義:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。

其他:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.

應(yīng)用:求函數(shù)值和某個(gè)區(qū)間上的函數(shù)解析式。

四、圖形變換:函數(shù)圖像變換:(重點(diǎn))要求掌握常見(jiàn)基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。

常見(jiàn)圖像變化規(guī)律:(注意平移變化能夠用向量的語(yǔ)言解釋,和按向量平移聯(lián)系起來(lái)思考)

平移變換y=f(x)→y=f(x+a),y=f(x)+b

注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過(guò)平移得到函數(shù)y=f(2x+4)的圖象。

(ⅱ)會(huì)結(jié)合向量的平移,理解按照向量(m,n)平移的意義。

對(duì)稱變換y=f(x)→y=f(-x),關(guān)于y軸對(duì)稱

y=f(x)→y=-f(x),關(guān)于x軸對(duì)稱

y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對(duì)稱

y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對(duì)稱。(注意:它是一個(gè)偶函數(shù))

伸縮變換:y=f(x)→y=f(ωx),

y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。

一個(gè)重要結(jié)論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關(guān)于直線x=a對(duì)稱;

高考數(shù)學(xué)函數(shù)知識(shí)點(diǎn)匯總2020相關(guān)文章

2020高三數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納

2020高考數(shù)學(xué)知識(shí)點(diǎn)大全

2020高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)大全

2020年高考數(shù)學(xué)考點(diǎn)

2020高考數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)

2020年高考復(fù)習(xí)攻略

2020高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

2020高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全

高考數(shù)學(xué)必考知識(shí)點(diǎn)考點(diǎn)2020大全總結(jié)

2020年高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高考數(shù)學(xué)函數(shù)知識(shí)點(diǎn)匯總2020

高中數(shù)學(xué)的知識(shí)點(diǎn)有很多,高考數(shù)學(xué)要想那高分就對(duì)知識(shí)點(diǎn)進(jìn)行總結(jié),下面就是小編給大家?guī)?lái)的高考數(shù)學(xué)知識(shí)點(diǎn)匯總2020,希望大家喜歡!集合一、集合概念(1)集合中元素的特征:確定性,互異
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

精選文章

  • 高三數(shù)學(xué)函數(shù)知識(shí)學(xué)習(xí)方法總結(jié)
    高三數(shù)學(xué)函數(shù)知識(shí)學(xué)習(xí)方法總結(jié)

    函數(shù)的性質(zhì)是研究初等函數(shù)的基石,也是高三考查的重點(diǎn)內(nèi)容,那你知道高三函數(shù)知識(shí)學(xué)習(xí)的方法有哪些嗎?下面是小編給大家整理的高三數(shù)學(xué)函數(shù)知識(shí)學(xué)

  • 高三數(shù)學(xué)三角函數(shù)專題知識(shí)點(diǎn)
    高三數(shù)學(xué)三角函數(shù)專題知識(shí)點(diǎn)

    已經(jīng)進(jìn)入高二上學(xué)期的同學(xué)們,在我們順利度過(guò)高中的適應(yīng)期,積極參與學(xué)校社團(tuán)活動(dòng),逐步形成了自我學(xué)習(xí)模式,初步擬定人生規(guī)劃后,要將自我的精力

  • 高三函數(shù)知識(shí)點(diǎn)總結(jié)
    高三函數(shù)知識(shí)點(diǎn)總結(jié)

    只有讓學(xué)生不把全部時(shí)間都用在學(xué)習(xí)上,而留下許多自由支配的時(shí)間,他才能順利地學(xué)習(xí)……(這)是教育過(guò)程的邏輯。下面給大家?guī)?lái)一些關(guān)于高三數(shù)學(xué)函

  • 高考數(shù)學(xué)常用三角函數(shù)公式總結(jié)
    高考數(shù)學(xué)常用三角函數(shù)公式總結(jié)

    數(shù)學(xué)知識(shí)點(diǎn)很多,只有進(jìn)行總結(jié),才能發(fā)現(xiàn)重點(diǎn)難點(diǎn),下面就是小編給大家?guī)?lái)的,希望大家喜歡!高考數(shù)學(xué)公式總結(jié)高考數(shù)學(xué)三角函數(shù)公式sinα=∠α的對(duì)

459605