2020年高考數(shù)學考點
數(shù)學是一切科學的基礎,一不小心就容易出錯,在高考上出錯可就不好了。接下來是小編為大家整理的2020年高考數(shù)學考點,希望大家喜歡!
2020年高考數(shù)學考點一
圓臺的概念:
用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分。
圓臺:
用一個平行于圓錐底面的平面去截圓錐,底面與截面之間的部分叫做圓臺,圓臺同圓柱和圓錐一樣也有軸、底面、側面和母線,并且用圓臺臺軸的字母表示圓臺。以直角梯形垂直于底邊的腰所在直線為旋轉軸,其余各邊旋轉而形成的曲面所圍成的幾何體叫做圓臺.旋轉軸叫做圓臺的軸.直角梯形上、下底旋轉所成的圓面稱為圓臺的上、下底面,另一腰旋轉所成的曲面稱為圓臺的側面,側面上各個位置的直角梯形的腰稱為圓臺的母線,圓臺的軸上的梯形的腰的長度叫做圓臺的高,圓臺的高也是上、下底面間的距離。圓臺也可認為是圓錐被它的軸的兩個垂直平面所截的部分,因此也可稱為“截頭圓錐”。
2020年高考數(shù)學考點二
三倍角公式
三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
三倍角公式推導
附推導:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^3(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
即
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
三倍角公式聯(lián)想記憶
正弦三倍角:3元 減 4元3角(欠債了(被減成負數(shù)),所以要“掙錢”(音似“正弦”))
余弦三倍角:4元3角 減 3元(減完之后還有“余”)
☆☆注意函數(shù)名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
★另外的記憶方法:
正弦三倍角: 山無司令 (諧音為 三無四立) 三指的是"3倍"sinα, 無指的是減號, 四指的是"4倍", 立指的是sinα立方
余弦三倍角: 司令無山 與上同理
和差化積公式
三角函數(shù)的和差化積公式
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
積化和差公式
三角函數(shù)的積化和差公式
sinα·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]
和差化積公式推導
附推導:
首先,我們知道sin(a+b)=sina_osb+cosa_inb,sin(a-b)=sina_osb-cosa_inb
我們把兩式相加就得到sin(a+b)+sin(a-b)=2sina_osb
所以,sina_osb=(sin(a+b)+sin(a-b))/2
同理,若把兩式相減,就得到cosa_inb=(sin(a+b)-sin(a-b))/2
同樣的,我們還知道cos(a+b)=cosa_osb-sina_inb,cos(a-b)=cosa_osb+sina_inb
所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosa_osb
所以我們就得到,cosa_osb=(cos(a+b)+cos(a-b))/2
同理,兩式相減我們就得到sina_inb=-(cos(a+b)-cos(a-b))/2
這樣,我們就得到了積化和差的四個公式:
sina_osb=(sin(a+b)+sin(a-b))/2
cosa_inb=(sin(a+b)-sin(a-b))/2
cosa_osb=(cos(a+b)+cos(a-b))/2
sina_inb=-(cos(a+b)-cos(a-b))/2
有了積化和差的四個公式以后,我們只需一個變形,就可以得到和差化積的四個公式。
我們把上述四個公式中的a+b設為x,a-b設為y,那么a=(x+y)/2,b=(x-y)/2
把a,b分別用x,y表示就可以得到和差化積的四個公式:
sinx+siny=2sin((x+y)/2)_os((x-y)/2)
sinx-siny=2cos((x+y)/2)_in((x-y)/2)
cosx+cosy=2cos((x+y)/2)_os((x-y)/2)
cosx-cosy=-2sin((x+y)/2)_in((x-y)/2)
2020年高考數(shù)學考點三
不等式恒成立問題致誤
解決不等式恒成立問題的常規(guī)求法是:借助相應函數(shù)的單調性求解,其中的主要方法有數(shù)形結合法、變量分離法、主元法。通過最值產(chǎn)生結論。應注意恒成立與存在性問題的區(qū)別,如對任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立問題,但對存在x∈[a,b],使f(x)≤g(x)成立,則為存在性問題,即f(x)min≤g(x)max,應特別注意兩函數(shù)中的最大值與最小值的關系。
忽視三視圖中的實、虛線致誤
三視圖是根據(jù)正投影原理進行繪制,嚴格按照“長對正,高平齊,寬相等”的規(guī)則去畫,若相鄰兩物體的表面相交,表面的交線是它們的原分界線,且分界線和可視輪廓線都用實線畫出,不可見的輪廓線用虛線畫出,這一點很容易疏忽。
面積體積計算轉化不靈活致誤
面積、體積的計算既需要學生有扎實的基礎知識,又要用到一些重要的思想方法,是高考考查的重要題型.因此要熟練掌握以下幾種常用的思想方法。(1)還臺為錐的思想:這是處理臺體時常用的思想方法。(2)割補法:求不規(guī)則圖形面積或幾何體體積時常用。(3)等積變換法:充分利用三棱錐的任意一個面都可作為底面的特點,靈活求解三棱錐的體積。(4)截面法:尤其是關于旋轉體及與旋轉體有關的組合問題,常畫出軸截面進行分析求解。
隨意推廣平面幾何中結論致誤
平面幾何中有些概念和性質,推廣到空間中不一定成立.例如“過直線外一點只能作一條直線與已知直線垂直”“垂直于同一條直線的兩條直線平行”等性質在空間中就不成立。
對折疊與展開問題認識不清致誤
折疊與展開是立體幾何中的常用思想方法,此類問題注意折疊或展開過程中平面圖形與空間圖形中的變量與不變量,不僅要注意哪些變了,哪些沒變,還要注意位置關系的變化。
點、線、面位置關系不清致誤
關于空間點、線、面位置關系的組合判斷類試題是高考全面考查考生對空間位置關系的判定和性質掌握程度的理想題型,歷來受到命題者的青睞,解決這類問題的基本思路有兩個:一是逐個尋找反例作出否定的判斷或逐個進行邏輯證明作出肯定的判斷;二是結合長方體模型或實際空間位置(如課桌、教室)作出判斷,但要注意定理應用準確、考慮問題全面細致。
忽視斜率不存在致誤
在解決兩直線平行的相關問題時,若利用l1∥l2?k1=k2來求解,則要注意其前提條件是兩直線不重合且斜率存在。如果忽略k1,k2不存在的情況,就會導致錯解。這類問題也可以利用如下的結論求解,即直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0平行的必要條件是A1B2-A2B1=0,在求出具體數(shù)值后代入檢驗,看看兩條直線是不是重合從而確定問題的答案。對于解決兩直線垂直的相關問題時也有類似的情況。利用l1⊥l2?k1·k2=-1時,要注意其前提條件是k1與k2必須同時存在。利用直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0垂直的充要條件是A1A2+B1B2=0,就可以避免討論。
忽視零截距致誤
解決有關直線的截距問題時應注意兩點:一是求解時一定不要忽略截距為零這種特殊情況;二是要明確截距為零的直線不能寫成截距式。因此解決這類問題時要進行分類討論,不要漏掉截距為零時的情況。
忽視圓錐曲線定義中條件致誤
利用橢圓、雙曲線的定義解題時,要注意兩種曲線的定義形式及其限制條件。如在雙曲線的定義中,有兩點是缺一不可的:其一,絕對值;其二,2a<|F1F2|。如果不滿足第一個條件,動點到兩定點的距離之差為常數(shù),而不是差的絕對值為常數(shù),那么其軌跡只能是雙曲線的一支。
誤判直線與圓錐曲線位置關系
過定點的直線與雙曲線的位置關系問題,基本的解決思路有兩個:一是利用一元二次方程的判別式來確定,但一定要注意,利用判別式的前提是二次項系數(shù)不為零,當二次項系數(shù)為零時,直線與雙曲線的漸近線平行(或重合),也就是直線與雙曲線最多只有一個交點;二是利用數(shù)形結合的思想,畫出圖形,根據(jù)圖形判斷直線和雙曲線各種位置關系。在直線與圓錐曲線的位置關系中,拋物線和雙曲線都有特殊情況,在解題時要注意,不要忘記其特殊性。
兩個計數(shù)原理不清致誤
分步加法計數(shù)原理與分類乘法計數(shù)原理是解決排列組合問題最基本的原理,故理解“分類用加、分步用乘”是解決排列組合問題的前提,在解題時,要分析計數(shù)對象的本質特征與形成過程,按照事件的結果來分類,按照事件的發(fā)生過程來分步,然后應用兩個基本原理解決.對于較復雜的問題既要用到分類加法計數(shù)原理,又要用到分步乘法計數(shù)原理,一般是先分類,每一類中再分步,注意分類、分步時要不重復、不遺漏,對于“至少、至多”型問題除了可以用分類方法處理外,還可以用間接法處理。
排列、組合不分致誤
為了簡化問題和表達方便,解題時應將具有實際意義的排列組合問題符號化、數(shù)學化,建立適當?shù)哪P?,再應用相關知識解決.建立模型的關鍵是判斷所求問題是排列問題還是組合問題,其依據(jù)主要是看元素的組成有沒有順序性,有順序性的是排列問題,無順序性的是組合問題。
混淆項系數(shù)與二項式系數(shù)致誤
在二項式(a+b)n的展開式中,其通項Tr+1=Crnan-rbr是指展開式的第r+1項,因此展開式中第1,2,3,...,n項的二項式系數(shù)分別是C0n,C1n,C2n,...,Cn-1n,而不是C1n,C2n,C3n,...,Cnn。而項的系數(shù)是二項式系數(shù)與其他數(shù)字因數(shù)的積。
循環(huán)結束判斷不準致誤
控制循環(huán)結構的是計數(shù)變量和累加變量的變化規(guī)律以及循環(huán)結束的條件。在解答這類題目時首先要弄清楚這兩個變量的變化規(guī)律,其次要看清楚循環(huán)結束的條件,這個條件由輸出要求所決定,看清楚是滿足條件時結束還是不滿足條件時結束。
條件結構對條件判斷不準致誤
條件結構的程序框圖中對判斷條件的分類是逐級進行的,其中沒有遺漏也沒有重復,在解題時對判斷條件要仔細辨別,看清楚條件和函數(shù)的對應關系,對條件中的數(shù)值不要漏掉也不要重復了端點值。
復數(shù)的概念不清致誤
對于復數(shù)a+bi(a,b∈R),a叫做實部,b叫做虛部;當且僅當b=0時,復數(shù)a+bi(a,b∈R)是實數(shù)a;當b≠0時,復數(shù)z=a+bi叫做虛數(shù);當a=0且b≠0時,z=bi叫做純虛數(shù)。解決復數(shù)概念類試題要仔細區(qū)分以上概念差別,防止出錯。另外,i2=-1是實現(xiàn)實數(shù)與虛數(shù)互化的橋梁,要適時進行轉化,解題時極易丟掉“-”而出錯。
2020年高考數(shù)學考點相關文章:
2020年高考數(shù)學考點
下一篇:高中數(shù)學基礎知識大全