學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高三學(xué)習(xí)方法>高三數(shù)學(xué)>

2023高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全

時(shí)間: 文瓊0 分享

  高中數(shù)學(xué)涉及的知識(shí)點(diǎn)很多,需要把高中三年的數(shù)學(xué)知識(shí)點(diǎn)總結(jié)起來(lái),這樣比較有利于復(fù)習(xí),下面由小編為大家整理有關(guān)高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)的資料,希望對(duì)大家有所幫助!

  高考數(shù)學(xué)知識(shí)點(diǎn):參數(shù)方程

  一、坐標(biāo)系與參數(shù)方程:

  1、坐標(biāo)系是解析幾何的基礎(chǔ)。在坐標(biāo)系中,可以用有序?qū)崝?shù)組確定點(diǎn)的位置,進(jìn)而用方程刻畫(huà)幾何圖形。為便于用代數(shù)的方法刻畫(huà)幾何圖形或描述自然現(xiàn)象,需要建立不同的坐標(biāo)系。極坐標(biāo)系、柱坐標(biāo)系、球坐標(biāo)系等是與直角坐標(biāo)系不同的坐標(biāo)系,對(duì)于有些幾何圖形,選用這些坐標(biāo)系可以使建立的方程更加簡(jiǎn)單。

  2、參數(shù)方程是以參變量為中介來(lái)表示曲線上點(diǎn)的坐標(biāo)的方程,是曲線在同一坐標(biāo)系下的又一種表示形式。某些曲線用參數(shù)方程表示比用普通方程表示更方便。學(xué)習(xí)參數(shù)方程有助于學(xué)生進(jìn)一步體會(huì)解決問(wèn)題中數(shù)學(xué)方法的靈活多變。

  二、高中數(shù)學(xué)知識(shí)點(diǎn)之參數(shù)方程定義

  一般的,在平面直角坐標(biāo)系中,如果曲線上任意一點(diǎn)的坐標(biāo)x,y都是某個(gè)變數(shù)t的函數(shù)x=f(t)、y=g(t)

  并且對(duì)于t的每一個(gè)允許值,由上述方程組所確定的點(diǎn)M(x,y)都在這條曲線上,那么上述方程則為這條曲線的參數(shù)方程,聯(lián)系x,y的變數(shù)t叫做變參數(shù),簡(jiǎn)稱(chēng)參數(shù),相對(duì)于參數(shù)方程而言,直接給出點(diǎn)的坐標(biāo)間關(guān)系的方程叫做普通方程。(注意:參數(shù)是聯(lián)系變數(shù)x,y的橋梁,可以是一個(gè)有物理意義和幾何意義的變數(shù),也可以是沒(méi)有實(shí)際意義的變數(shù)。

  三、高中數(shù)學(xué)知識(shí)點(diǎn)之參數(shù)方程

  圓的參數(shù)方程x=a+rcosθy=b+rsinθ(a,b)為圓心坐標(biāo)r為圓半徑θ為參數(shù)

  橢圓的參數(shù)方程x=acosθy=bsinθa為長(zhǎng)半軸長(zhǎng)b為短半軸長(zhǎng)θ為參數(shù)

  雙曲線的參數(shù)方程x=asecθ(正割)y=btanθa為實(shí)半軸長(zhǎng)b為虛半軸長(zhǎng)θ為參數(shù)

  高考數(shù)學(xué)知識(shí)點(diǎn):判斷函數(shù)值域的方法

  1、配方法:利用二次函數(shù)的配方法求值域,需注意自變量的取值范圍。

  2、換元法:常用代數(shù)或三角代換法,把所給函數(shù)代換成值域容易確定的另一函數(shù),從而得到原函數(shù)值域,如y=ax+b+_√cx-d(a,b,c,d均為常數(shù)且ac不等于0)的函數(shù)常用此法求解。

  3、判別式法:若函數(shù)為分式結(jié)構(gòu),且分母中含有未知數(shù)x?,則常用此法。通常去掉分母轉(zhuǎn)化為一元二次方程,再由判別式△≥0,確定y的范圍,即原函數(shù)的值域

  4、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函數(shù)值域時(shí),要時(shí)刻注意不等式成立的條件,即“一正,二定,三相等”。

  5、反函數(shù)法:若原函數(shù)的值域不易直接求解,則可以考慮其反函數(shù)的定義域,根據(jù)互為反函數(shù)的兩個(gè)函數(shù)定義域與值域互換的特點(diǎn),確定原函數(shù)的值域,如y=cx+d/ax+b(a≠0)型函數(shù)的值域,可采用反函數(shù)法,也可用分離常數(shù)法。

  6、單調(diào)性法:首先確定函數(shù)的定義域,然后在根據(jù)其單調(diào)性求函數(shù)值域,常用到函數(shù)y=x+p/x(p>0)的單調(diào)性:增區(qū)間為(-∞,-√p)的左開(kāi)右閉區(qū)間和(√p,+∞)的左閉右開(kāi)區(qū)間,減區(qū)間為(-√p,0)和(0,√p)

  7、數(shù)形結(jié)合法:分析函數(shù)解析式表達(dá)的集合意義,根據(jù)其圖像特點(diǎn)確定值域。

  高考數(shù)學(xué)知識(shí)點(diǎn):求函數(shù)單調(diào)性的基本方法

  解:先要弄清概念和研究目的,因?yàn)楹瘮?shù)本身是動(dòng)態(tài)的,所以判斷函數(shù)的單調(diào)性、奇偶性,還有研究函數(shù)切線的斜率、極值等等,都是為了更好地了解函數(shù)本身所采用的方法。其次就解題技巧而言,當(dāng)然是立足于掌握課本上的例題,然后再找些典型例題做做就可以了,這部分知識(shí)僅就應(yīng)付解題而言應(yīng)該不是很難。最后找些考試試卷題目來(lái)解,針對(duì)考試會(huì)出的題型強(qiáng)化一下,所謂知己知彼百戰(zhàn)不殆。 1、把握好函數(shù)單調(diào)性的定義。證明函數(shù)單調(diào)性一般(初學(xué)最好用定義)用定義(謹(jǐn)防循環(huán)論證),如果函數(shù)解析式異常復(fù)雜或者具有某種特殊形式,可以采用函數(shù)單調(diào)性定義的等價(jià)形式證明。另外還請(qǐng)注意函數(shù)單調(diào)性的定義是[充要命題]。

  2、熟練掌握基本初等函數(shù)的單調(diào)性及其單調(diào)區(qū)間。理解并掌握判斷復(fù)合函數(shù)單調(diào)性的方法:同增異減。

  3、高三選修課本有導(dǎo)數(shù)及其應(yīng)用,用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間一般是非常簡(jiǎn)便的。 還應(yīng)注意函數(shù)單調(diào)性的應(yīng)用,例如求極值、比較大小,還有和不等式有關(guān)的問(wèn)題。

  高考數(shù)學(xué)1-1知識(shí)點(diǎn)

  第一,函數(shù)與導(dǎo)數(shù)。主要考查集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。

  第二,平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎(chǔ)題或中檔題。

  第三,數(shù)列及其應(yīng)用。這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。

  第四,不等式。主要考查不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)。

  第五,概率和統(tǒng)計(jì)。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。

  第六,空間位置關(guān)系的定性與定量分析,主要是證明平行或垂直,求角和距離。

  第七,解析幾何。是高考的難點(diǎn),運(yùn)算量大,一般含參數(shù)。

  高考數(shù)學(xué)七大復(fù)習(xí)要點(diǎn)

  第一:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)

  主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問(wèn)題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的問(wèn)題,這是第一個(gè)板塊。

  第二:平面向量和三角函數(shù)

  重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來(lái)解三角形。難度比較小。

  第三:數(shù)列

  數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。

  第四:空間向量和立體幾何

  在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。

  第五:概率和統(tǒng)計(jì)

  這一板塊主要是屬于數(shù)學(xué)應(yīng)用問(wèn)題的范疇,當(dāng)然應(yīng)該掌握下面幾個(gè)方面,第一……等可能的概率,第二………事件,第三是獨(dú)立事件,還有獨(dú)立重復(fù)事件發(fā)生的概率。

  第六:解析幾何

  解析幾何是比較頭疼的問(wèn)題,是整個(gè)試卷里難度比較大,計(jì)算量最高的題,這一類(lèi)題有以下五類(lèi)??嫉念}型,包括第一類(lèi)所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容??忌鷳?yīng)該掌握它的通法,第二類(lèi)是動(dòng)點(diǎn)問(wèn)題,第三類(lèi)是弦長(zhǎng)問(wèn)題,第四類(lèi)是對(duì)稱(chēng)問(wèn)題,這也是2008年高考已經(jīng)考過(guò)的一點(diǎn),第五類(lèi)重點(diǎn)問(wèn)題,這類(lèi)題時(shí)計(jì)算量十分大。

  第七:壓軸題

  考生在備考復(fù)習(xí)時(shí),應(yīng)該重點(diǎn)不等式計(jì)算的方法,雖然說(shuō)難度比較大,我建議考生,采取分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。

  高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié):三角函數(shù)

  一、三角函數(shù)

  1.周期函數(shù):一般地,對(duì)于函數(shù)f(x),如果存在一個(gè)不為0的常數(shù)T使得當(dāng)x取定義域內(nèi)的每一個(gè)值時(shí),都有f(x+T)=f(x),那么函數(shù)f(x)就叫做周期函數(shù),非零常數(shù)T叫做這個(gè)函數(shù)的周期,把所有周期中存在的最小正數(shù),叫做最小正周期三角函數(shù)屬于高中數(shù)學(xué)中的重點(diǎn)內(nèi)容,在高考理科數(shù)學(xué)中更是占據(jù)很重要的位置。

  2.三角函數(shù)的圖像:可以利用三角函數(shù)線用幾何法作出,在精確度要求不高的情況下,常用五點(diǎn)法作圖,要特別注意“五點(diǎn)”的取法。

  3.三角函數(shù)的定義域:三角函數(shù)的定義域是研究其他一切性質(zhì)的前提,求三角函數(shù)的定義域?qū)嶋H上就是解最簡(jiǎn)單的三角不等式,通??捎萌呛瘮?shù)的圖像或三角函數(shù)線來(lái)求解,注意數(shù)形結(jié)合思想的應(yīng)用。

  二、反三角函數(shù)主要是三個(gè):

  y=arcsin(x),定義域[-1,1] ,值域[-π/2,π/2]圖象用紅色線條;

  y=arccos(x),定義域[-1,1] , 值域[0,π],圖象用藍(lán)色線條;

  y=arctan(x),定義域(-∞,+∞),值域(-π/2,π/2),圖象用綠色線條;

  sin(arcsin x)=x,定義域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx

  三、三角函數(shù)其他公式

  arcsin(-x)=-arcsinx

  arccos(-x)=π-arccosx

  arctan(-x)=-arctanx

  arccot(-x)=π-arccotx

  arcsinx+arccosx=π/2=arctanx+arccotx

  sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

  當(dāng)x∈[—π/2,π/2]時(shí),有arcsin(sinx)=x

  當(dāng)x∈[0,π],arccos(cosx)=x

  x∈(—π/2,π/2),arctan(tanx)=x

  x∈(0,π),arccot(cotx)=x

  x〉0,arctanx=π/2-arctan1/x,arccotx類(lèi)似

  若(arctanx+arctany)∈(—π/2,π/2),則arctanx+arctany=arctan(x+y/1-xy)

  四、三角函數(shù)與平面向量的綜合問(wèn)題

  (1)巧妙“轉(zhuǎn)化”--把以“向量的數(shù)量積、平面向量共線、平面向量垂直”“向量的線性運(yùn)算”形式出現(xiàn)的條件還其本來(lái)面目,轉(zhuǎn)化為“對(duì)應(yīng)坐標(biāo)乘積之間的關(guān)系”;

  (2)巧挖“條件”--利用隱含條件”正弦函數(shù)、余弦函數(shù)、的有界性“,把不等式的恒成立問(wèn)題轉(zhuǎn)化為含參數(shù)ψ的方程,求出參數(shù)ψ的值,從而可求函數(shù)的解析式;

  (3)活用”性質(zhì)“--活用正弦函數(shù)與余弦函數(shù)的單調(diào)性、對(duì)稱(chēng)性、周期性、奇偶性,以及整體換元思想,即可求其對(duì)稱(chēng)軸與單調(diào)區(qū)間。

  五、見(jiàn)三角函數(shù)“對(duì)稱(chēng)”問(wèn)題,啟用圖象特征代數(shù)關(guān)系:(A≠0)

  1.函數(shù)y=Asin(wx+φ)和函數(shù)y=Acos(wx+φ)的圖象,關(guān)于過(guò)最值點(diǎn)且平行于y軸的直線分別成軸對(duì)稱(chēng);

  2.函數(shù)y=Asin(wx+φ)和函數(shù)y=Acos(wx+φ)的圖象,關(guān)于其中間零點(diǎn)分別成中心對(duì)稱(chēng);

  3.同樣,利用圖象也可以得到函數(shù)y=Atan(wx+φ)和函數(shù)y=Acot(wx+φ)的對(duì)稱(chēng)性質(zhì)。

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全相關(guān)文章

1.高考數(shù)學(xué)必考知識(shí)點(diǎn)考點(diǎn)2020大全總結(jié)

2.高三數(shù)學(xué)知識(shí)點(diǎn)考點(diǎn)總結(jié)大全

3.高考數(shù)學(xué)知識(shí)點(diǎn)大全

4.高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

5.2017年高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

6.高考數(shù)學(xué)知識(shí)點(diǎn)有多少 高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)精華版

7.高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

8.高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

9.高考數(shù)學(xué)知識(shí)點(diǎn)歸納整理

10.高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

430335