學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高二學(xué)習(xí)方法 > 高二數(shù)學(xué) >

        高二數(shù)學(xué)模擬大考的知識點(diǎn)

        時間: 贊銳20 分享

        高二是高中三年中最關(guān)鍵的一年,在開學(xué)之初希望同學(xué)們迅速適應(yīng)新的環(huán)境,提升學(xué)習(xí)和精神兩個狀態(tài),養(yǎng)成良好的學(xué)習(xí)和生活習(xí)慣。以下是小編給大家整理的高二數(shù)學(xué)模擬大考的知識點(diǎn),希望能助你一臂之力!

        高二數(shù)學(xué)模擬大考的知識點(diǎn)1

        直線、平面、簡單幾何體:

        1、學(xué)會三視圖的分析:

        2、斜二測畫法應(yīng)注意的地方:

        (1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應(yīng)軸o'x'、o'y'、使∠x'o'y'=45°(或135°);

        (2)平行于x軸的線段長不變,平行于y軸的線段長減半.

        (3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

        3、表(側(cè))面積與體積公式:

        ⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h

        ⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:

        ⑶臺體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=

        ⑷球體:①表面積:S=;②體積:V=

        4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫

        (1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

        (2)平面與平面平行:①線面平行面面平行。

        (3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

        5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

        ⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;

        ⑵直線與平面所成的角:直線與射影所成的角

        高二數(shù)學(xué)模擬大考的知識點(diǎn)2

        形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

        自變量x的取值范圍是不等于0的一切實(shí)數(shù)。

        反比例函數(shù)圖像性質(zhì):

        反比例函數(shù)的圖像為雙曲線。

        由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對稱。

        另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個坐標(biāo)軸作垂線,這點(diǎn)、兩個垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

        如圖,上面給出了k分別為正和負(fù)(2和-2)時的函數(shù)圖像。

        當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

        當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

        反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

        知識點(diǎn):

        1.過反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。

        2.對于雙曲線y=k/x,若在分母上加減任意一個實(shí)數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

        高二數(shù)學(xué)模擬大考的知識點(diǎn)3

        導(dǎo)數(shù)是微積分中的`重要基礎(chǔ)概念。當(dāng)函數(shù)=f(x)的自變量x在一點(diǎn)x0上產(chǎn)生一個增量Δx時,函數(shù)輸出值的增量Δ與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導(dǎo)數(shù),記作f'(x0)或df(x0)/dx。

        導(dǎo)數(shù)是函數(shù)的局部性質(zhì)。一個函數(shù)在某一點(diǎn)的導(dǎo)數(shù)描述了這個函數(shù)在這一點(diǎn)附近的變化率。如果函數(shù)的自變量和取值都是實(shí)數(shù)的話,函數(shù)在某一點(diǎn)的導(dǎo)數(shù)就是該函數(shù)所代表的曲線在這一點(diǎn)上的切線斜率。導(dǎo)數(shù)的本質(zhì)是通過極限的概念對函數(shù)進(jìn)行局部的線性逼近。例如在運(yùn)動學(xué)中,物體的位移對于時間的導(dǎo)數(shù)就是物體的瞬時速度。

        不是所有的函數(shù)都有導(dǎo)數(shù),一個函數(shù)也不一定在所有的點(diǎn)上都有導(dǎo)數(shù)。若某函數(shù)在某一點(diǎn)導(dǎo)數(shù)存在,則稱其在這一點(diǎn)可導(dǎo),否則稱為不可導(dǎo)。然而,可導(dǎo)的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導(dǎo)。

        對于可導(dǎo)的函數(shù)f(x),xf'(x)也是一個函數(shù),稱作f(x)的導(dǎo)函數(shù)。尋找已知的函數(shù)在某點(diǎn)的導(dǎo)數(shù)或其導(dǎo)函數(shù)的過程稱為求導(dǎo)。實(shí)質(zhì)上,求導(dǎo)就是一個求極限的過程,導(dǎo)數(shù)的四則運(yùn)算法則也于極限的四則運(yùn)算法則。反之,已知導(dǎo)函數(shù)也可以倒過來求原來的函數(shù),即不定積分。微積分基本定理說明了求原函數(shù)與積分是等價的。求導(dǎo)和積分是一對互逆的操作,它們都是微積分學(xué)中最為基礎(chǔ)的概念。

        設(shè)函數(shù)=f(x)在點(diǎn)x0的某個鄰域內(nèi)有定義,當(dāng)自變量x在x0處有增量Δx,(x0+Δx)也在該鄰域內(nèi)時,相應(yīng)地函數(shù)取得增量Δ=f(x0+Δx)-f(x0);如果Δ與Δx之比當(dāng)Δx→0時極限存在,則稱函數(shù)=f(x)在點(diǎn)x0處可導(dǎo),并稱這個極限為函數(shù)=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),也記作'│x=x0或d/dx│x=x0


        高二數(shù)學(xué)模擬大考的知識點(diǎn)相關(guān)文章:

        高二數(shù)學(xué)考試必考知識點(diǎn)

        高二數(shù)學(xué)考試知識點(diǎn)

        高二數(shù)學(xué)知識點(diǎn)歸納總結(jié)

        高二數(shù)學(xué)??贾R點(diǎn)總結(jié)

        高二數(shù)學(xué)知識點(diǎn)2020總結(jié)

        高二數(shù)學(xué)知識點(diǎn)復(fù)習(xí)總結(jié)

        高二數(shù)學(xué)知識點(diǎn)總結(jié)

        高二數(shù)學(xué)知識點(diǎn)總結(jié)歸納

        2018高二數(shù)學(xué)會考知識點(diǎn)總結(jié)

        1079338