學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)>

高二年級(jí)數(shù)學(xué)整冊(cè)的知識(shí)點(diǎn)總結(jié)

時(shí)間: 贊銳0 分享

在平時(shí)聽(tīng)課時(shí),一個(gè)明知的學(xué)生,應(yīng)該聽(tīng)老師對(duì)該題目的分析和歸納。但還有不少學(xué)生,不注意教師的分析,往往沉靜在老師講解的每一步計(jì)算、每一步推證過(guò)程。以下是小編給大家整理的高二年級(jí)數(shù)學(xué)整冊(cè)的知識(shí)點(diǎn)總結(jié),希望大家能夠喜歡!

高二年級(jí)數(shù)學(xué)整冊(cè)的知識(shí)點(diǎn)總結(jié)1

一.隨機(jī)事件的概率及概率的意義

1、基本概念:

(1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;

(2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;

(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對(duì)于條件S的確定事件;

(4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;

(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);對(duì)于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。

(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率

二.概率的基本性質(zhì)

1、基本概念:

(1)事件的包含、并事件、交事件、相等事件

(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;

(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對(duì)立事件;

(4)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對(duì)立事件,則A∪B為必然事件,所以

P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)

2、概率的基本性質(zhì):

1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;

2)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)=P(A)+P(B);

3)若事件A與B為對(duì)立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);

4)互斥事件與對(duì)立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗(yàn)中不會(huì)同時(shí)發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;

(2)事件A不發(fā)生且事件B發(fā)生;

(3)事件A與事件B同時(shí)不發(fā)生,而對(duì)立事件是指事件A與事件B有且僅有一個(gè)發(fā)生,其包括兩種情形;

(1)事件A發(fā)生B不發(fā)生;

(2)事件B發(fā)生事件A不發(fā)生,對(duì)立事件互斥事件的特殊情形。三.古典概型及隨機(jī)數(shù)的產(chǎn)生

(1)古典概型的使用條件:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。

(2)古典概型的解題步驟;①求出總的基本事件數(shù);

②求出事件A所包含的基本事件數(shù),然后利用公式P(A)=

四.幾何概型及均勻隨機(jī)數(shù)的產(chǎn)生

基本概念:(1)幾何概率模型:如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;

(2)幾何概型的概率公式:P(A)=;

(3)幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè);

2)每個(gè)基本事件出現(xiàn)的可能性相等.

高二年級(jí)數(shù)學(xué)整冊(cè)的知識(shí)點(diǎn)總結(jié)2

1.向量的基本概念

(1)向量

既有大小又有方向的量叫做向量.物理學(xué)中又叫做矢量.如力、速度、加速度、位移就是向量.

向量可以用一條有向線段(帶有方向的線段)來(lái)表示,用有向線段的長(zhǎng)度表示向量的大小,用箭頭所指的方向表示向量的方向.向量也可以用一個(gè)小寫(xiě)字母a,b,c表示,或用兩個(gè)大寫(xiě)字母加表示(其中前面的字母為起點(diǎn),后面的字母為終點(diǎn))

(5)平行向量

方向相同或相反的非零向量,叫做平行向量.平行向量也叫做共線向量.

若向量a、b平行,記作a∥b.

規(guī)定:0與任一向量平行.

(6)相等向量

長(zhǎng)度相等且方向相同的向量叫做相等向量.

①向量相等有兩個(gè)要素:一是長(zhǎng)度相等,二是方向相同,二者缺一不可.

②向量a,b相等記作a=b.

③零向量都相等.

④任何兩個(gè)相等的非零向量,都可用同一有向線段表示,但特別要注意向量相等與有向線段的起點(diǎn)無(wú)關(guān).

2.對(duì)于向量概念需注意

(1)向量是區(qū)別于數(shù)量的一種量,既有大小,又有方向,任意兩個(gè)向量不能比較大小,只可以判斷它們是否相等,但向量的模可以比較大小.

(2)向量共線與表示它們的有向線段共線不同.向量共線時(shí),表示向量的有向線段可以是平行的,不一定在同一條直線上;而有向線段共線則是指線段必須在同一條直線上.

(3)由向量相等的定義可知,對(duì)于一個(gè)向量,只要不改變它的大小和方向,它是可以任意平行移動(dòng)的,因此用有向線段表示向量時(shí),可以任意選取有向線段的起點(diǎn),由此也可得到:任意一組平行向量都可以平移到同一條直線上.

3.向量的運(yùn)算律

(1)交換律:α+β=β+α

(2)結(jié)合律:(α+β)+γ=α+(β+γ)

(3)數(shù)量加法的分配律:(λ+μ)α=λα+μα

(4)向量加法的分配律:γ(α+β)=γα+γβ

高二年級(jí)數(shù)學(xué)整冊(cè)的知識(shí)點(diǎn)總結(jié)3

判斷充分與必要條件

一、定義法

對(duì)于“?圯”,可以簡(jiǎn)單的記為箭頭所指為必要,箭尾所指為充分。在解答此類題目時(shí),利用定義直接推導(dǎo),一定要抓住命題的條件和結(jié)論的四種關(guān)系的定義。

例1已知p:-2

分析條件p確定了m,n的范圍,結(jié)論q則明確了方程的根的特點(diǎn),且m,n作為系數(shù),因此理應(yīng)聯(lián)想到根與系數(shù)的關(guān)系,然后再進(jìn)一步化簡(jiǎn)。

解設(shè)x1,x2是方程x2+mx+n=0的兩個(gè)小于1的正根,即0

而對(duì)于滿足條件p的m=-1,n=,方程x2-x+=0并無(wú)實(shí)根,所以pq。

綜上,可知p是q的必要但不充分條件。

點(diǎn)評(píng)解決條件判斷問(wèn)題時(shí),務(wù)必分清誰(shuí)是條件,誰(shuí)是結(jié)論,然后既要嘗試由條件能否推出結(jié)論,也要嘗試由結(jié)論能否推出條件,這樣才能明確做出充分性與必要性的判斷。

二、集合法

如果將命題p,q分別看作兩個(gè)集合A與B,用集合意識(shí)解釋條件,則有:①若A?哿B,則x∈A是x∈B的充分條件,x∈B是x∈A的必要條件;②若A?芴B,則x∈A是x∈B的充分不必要條件,x∈B是x∈A的必要不充分條件;③若A=B,則x∈A和x∈B互為充要條件;④若A?芫B且A?蕓B,則x∈A和x∈B互為既不充分也不必要條件。

三、逆否法

利用互為逆否命題的等價(jià)關(guān)系,應(yīng)用“正難則反”的數(shù)學(xué)思想,將判斷“p?圯q”轉(zhuǎn)化為判斷“非q非p”的真假。

例3(1)判斷p:x≠3且y≠2是q:x+y≠5的什么條件;

(2)判斷p:x≠3或y≠2是q:x+y≠5的什么條件。

解(1)原命題等價(jià)于判斷非q:x+y=5是非p:x=3或y=2的什么條件。

顯然非p非q,非q非p,故p是q的既不充分也不必要條件。

(2)原命題等價(jià)于判斷非q:x+y=5是非p:x=3且y=2的什么條件。

因?yàn)榉莗?圯非q,但非q非p,故p是q的必要不充分條件。

點(diǎn)評(píng)當(dāng)命題含有否定詞時(shí),可考慮通過(guò)逆否命題等價(jià)轉(zhuǎn)化判斷。

高二年級(jí)數(shù)學(xué)整冊(cè)的知識(shí)點(diǎn)總結(jié)相關(guān)文章

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

高二數(shù)學(xué)知識(shí)點(diǎn)2020總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)全

高二數(shù)學(xué)整體知識(shí)總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)新總結(jié)2020

高二數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)小結(jié)

1079313