學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)>

高二數(shù)學(xué)期中考試的知識(shí)點(diǎn)分析

時(shí)間: 贊銳0 分享

數(shù)學(xué)的學(xué)習(xí)過程中千萬不要有心理包袱和顧慮,任何學(xué)科也是一樣,是一個(gè)慢慢學(xué)習(xí)和積累的過程。但要記住的一點(diǎn),這個(gè)過程我們是否能真正的學(xué)好數(shù)學(xué)課程(或者其他課程),以下是小編給大家整理的高二數(shù)學(xué)期中考試的知識(shí)點(diǎn)分析,希望大家能夠喜歡!

高二數(shù)學(xué)期中考試的知識(shí)點(diǎn)分析1

導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問題、曲線切線問題)

1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作.

2.導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的斜率

①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。

3.常見函數(shù)的導(dǎo)數(shù)公式:①;②;③;

⑤;⑥;⑦;⑧。

4.導(dǎo)數(shù)的四則運(yùn)算法則:

5.導(dǎo)數(shù)的應(yīng)用:

(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);

注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

(2)求極值的步驟:

①求導(dǎo)數(shù);

②求方程的根;

③列表:檢驗(yàn)在方程根的左右的符號(hào),如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;

(3)求可導(dǎo)函數(shù)值與最小值的步驟:

ⅰ求的根;ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。

高二數(shù)學(xué)期中考試的知識(shí)點(diǎn)分析2

1.不等式證明的依據(jù)

(2)不等式的性質(zhì)(略)

(3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

②a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))

2.不等式的證明方法

(1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.

用比較法證明不等式的步驟是:作差——變形——判斷符號(hào).

(2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.

(3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時(shí),從而斷定原不等式成立,這種證明不等式的方法叫做分析法.

證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.

高二數(shù)學(xué)期中考試的知識(shí)點(diǎn)分析3

復(fù)數(shù)的概念:

形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母C表示。

復(fù)數(shù)的表示:

復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實(shí)部,b叫復(fù)數(shù)的虛部。

復(fù)數(shù)的幾何意義:

(1)復(fù)平面、實(shí)軸、虛軸:

點(diǎn)Z的橫坐標(biāo)是a,縱坐標(biāo)是b,復(fù)數(shù)z=a+bi(a、b∈R)可用點(diǎn)Z(a,b)表示,這個(gè)建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實(shí)軸,y軸叫做虛軸。顯然,實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù)

(2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點(diǎn)所成的集合是一一對(duì)應(yīng)關(guān)系,即

這是因?yàn)?,每一個(gè)復(fù)數(shù)有復(fù)平面內(nèi)惟一的一個(gè)點(diǎn)和它對(duì)應(yīng);反過來,復(fù)平面內(nèi)的每一個(gè)點(diǎn),有惟一的一個(gè)復(fù)數(shù)和它對(duì)應(yīng)。

這就是復(fù)數(shù)的一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。

復(fù)數(shù)的模:

復(fù)數(shù)z=a+bi(a、b∈R)在復(fù)平面上對(duì)應(yīng)的點(diǎn)Z(a,b)到原點(diǎn)的距離叫復(fù)數(shù)的模,記為|Z|,即|Z|=

虛數(shù)單位i:

(1)它的平方等于-1,即i2=-1;

(2)實(shí)數(shù)可以與它進(jìn)行四則運(yùn)算,進(jìn)行四則運(yùn)算時(shí),原有加、乘運(yùn)算律仍然成立

(3)i與-1的關(guān)系:i就是-1的一個(gè)平方根,即方程x2=-1的一個(gè)根,方程x2=-1的另一個(gè)根是-i。

(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

復(fù)數(shù)模的性質(zhì):

復(fù)數(shù)與實(shí)數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:

對(duì)于復(fù)數(shù)a+bi(a、b∈R),當(dāng)且僅當(dāng)b=0時(shí),復(fù)數(shù)a+bi(a、b∈R)是實(shí)數(shù)a;當(dāng)b≠0時(shí),復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b≠0時(shí),z=bi叫做純虛數(shù);當(dāng)且僅當(dāng)a=b=0時(shí),z就是實(shí)數(shù)0。

高二數(shù)學(xué)期中考試的知識(shí)點(diǎn)分析相關(guān)文章

2017高二數(shù)學(xué)期中考試必背的知識(shí)點(diǎn)

高二數(shù)學(xué)考試必考知識(shí)點(diǎn)

高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

高二數(shù)學(xué)考點(diǎn)知識(shí)點(diǎn)總結(jié)復(fù)習(xí)大綱

高二數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)最新歸納

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高二數(shù)學(xué)重要知識(shí)點(diǎn)歸納

高二數(shù)學(xué)期中考試的知識(shí)點(diǎn)分析

數(shù)學(xué)的學(xué)習(xí)過程中千萬不要有心理包袱和顧慮,任何學(xué)科也是一樣,是一個(gè)慢慢學(xué)習(xí)和積累的過程。但要記住的一點(diǎn),這個(gè)過程我們是否能真正的學(xué)好數(shù)學(xué)課程(或者其他課程),以下是小編給大家整理的高二數(shù)學(xué)期中考試的知
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

精選文章

1070876