學習啦>學習方法>備考資料>

數(shù)學北師大版必修二提綱

時間: 自暢0 分享

很多的學生對于數(shù)學都感到頭痛,因為數(shù)學的分數(shù)每次都不高,并且很多的知識點都不太懂,下面小編給大家分享一些數(shù)學北師大版必修二提綱,希望能夠幫助大家,歡迎閱讀!

數(shù)學北師大版必修二提綱

一、直線與方程

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點的直線的斜率公式:

注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

(3)直線方程

①點斜式:直線斜率k,且過點

注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。

當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。

②斜截式:,直線斜率為k,直線在y軸上的截距為b

③兩點式:()直線兩點,

④截矩式:

其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為。

⑤一般式:(A,B不全為0)

注意:各式的適用范圍特殊的方程如:

平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

(5)直線系方程:即具有某一共同性質(zhì)的直線

(一)平行直線系

平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

(二)垂直直線系

垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

(三)過定點的直線系

(ⅰ)斜率為k的直線系:,直線過定點;

(ⅱ)過兩條直線,的交點的直線系方程為

(為參數(shù)),其中直線不在直線系中。

(6)兩直線平行與垂直

當,時,;

注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。

(7)兩條直線的交點

相交

交點坐標即方程組的一組解。

方程組無解;方程組有無數(shù)解與重合

(8)兩點間距離公式:設是平面直角坐標系中的兩個點,

(9)點到直線距離公式:一點到直線的距離

(10)兩平行直線距離公式

在任一直線上任取一點,再轉(zhuǎn)化為點到直線的距離進行求解。

二、圓的方程

1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

2、圓的方程

(1)標準方程,圓心,半徑為r;

(2)一般方程

當時,方程表示圓,此時圓心為,半徑為

當時,表示一個點;當時,方程不表示任何圖形。

(3)求圓方程的方法

一般都采用待定系數(shù)法:先設后求。確定一個圓需要三個獨立條件,若利用圓的標準方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。

3、直線與圓的位置關(guān)系:

直線與圓的位置關(guān)系有相離,相切,相交三種情況:

(1)設直線,圓,圓心到l的距離為,則有;;

(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程

(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

設圓,

兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

當時兩圓外離,此時有公切線四條;

當時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;

當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

當時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;

當時,兩圓內(nèi)含;當時,為同心圓。

注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

圓的輔助線一般為連圓心與切線或者連圓心與弦中點

三、立體幾何初步

1、柱、錐、臺、球的結(jié)構(gòu)特征

(1)棱柱:

幾何特征:兩底面是對應邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

(3)棱臺:

幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點

(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。

(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。

(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。

(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

俯視圖(從上向下)

注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

4、柱體、錐體、臺體的表面積與體積

(1)幾何體的表面積為幾何體各個面的面積的和。

(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

(3)柱體、錐體、臺體的體積公式

(4)球體的表面積和體積公式:V=;S=

4、空間點、直線、平面的位置關(guān)系

公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線是所有的點都在這個平面內(nèi)。

應用:判斷直線是否在平面內(nèi)

用符號語言表示公理1:

公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

符號:平面α和β相交,交線是a,記作α∩β=a。

符號語言:

公理2的作用:

①它是判定兩個平面相交的方法。

②它說明兩個平面的交線與兩個平面公共點之間的關(guān)系:交線x共點。

③它可以判斷點在直線上,即證若干個點共線的重要依據(jù)。

公理3:經(jīng)過不在同一條直線上的三點,有且只有一個平面。

推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。

公理3及其推論作用:

①它是空間內(nèi)確定平面的依據(jù)

②它是證明平面重合的依據(jù)

公理4:平行于同一條直線的兩條直線互相平行

空間直線與直線之間的位置關(guān)系

①異面直線定義:不同在任何一個平面內(nèi)的兩條直線

②異面直線性質(zhì):既不平行,又不相交。

③異面直線判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線

④異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。

求異面直線所成角步驟:

A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。

B、證明作出的角即為所求角

C、利用三角形來求角

(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補。

(8)空間直線與平面之間的位置關(guān)系

直線在平面內(nèi)——有無數(shù)個公共點.

三種位置關(guān)系的符號表示:aαa∩α=Aa‖α

(9)平面與平面之間的位置關(guān)系:平行——沒有公共點;α‖β

相交——有一條公共直線。α∩β=b

5、空間中的平行問題

(1)直線與平面平行的判定及其性質(zhì)

線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。

線線平行線面平行

線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。線面平行線線平行

(2)平面與平面平行的判定及其性質(zhì)

兩個平面平行的判定定理

(1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行

(線面平行→面面平行),

(2)如果在兩個平面內(nèi),各有兩組相交直線對應平行,那么這兩個平面平行。

(線線平行→面面平行),

(3)垂直于同一條直線的兩個平面平行,

兩個平面平行的性質(zhì)定理

(1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行。(面面平行→線面平行)

(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)

7、空間中的垂直問題

(1)線線、面面、線面垂直的定義

①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。

②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。

③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。

(2)垂直關(guān)系的判定和性質(zhì)定理

①線面垂直判定定理和性質(zhì)定理

判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。

性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。

②面面垂直的判定定理和性質(zhì)定理

判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。

性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。

9、空間角問題

(1)直線與直線所成的角

①兩平行直線所成的角:規(guī)定為。

②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。

③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

(2)直線和平面所成的角

①平面的平行線與平面所成的角:規(guī)定為。

②平面的垂線與平面所成的角:規(guī)定為。

③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角。

求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”。

在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點到面的垂線,

在解題時,注意挖掘題設中兩個主要信息:

(1)斜線上一點到面的垂線;

(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。

(3)二面角和二面角的平面角

①二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。

②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。

③直二面角:平面角是直角的二面角叫直二面角。

兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

④求二面角的方法

定義法:在棱上選擇有關(guān)點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角

垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

短時間提高數(shù)學成績的方法

1、查查在知識方面還能做那些努力。關(guān)鍵的是做好知識的準備,考前要檢查自己在初中學習的數(shù)學知識是否還有漏洞,是否有遺忘或易混的地方;其次是對解題常犯錯誤的準備,再看一下自己的錯誤筆記,如果你沒有錯題本,那可以把以前的做過的卷子找出來。翻看修改的部分,那就是出錯的地方、爭取在答卷時,不犯或少犯過去曾犯過的錯誤。也就是錯誤不二犯。

2、一定要對自己、對未來充滿信心,心態(tài)問題是影響考試的最重要的原因。走進考場就要有舍我其誰的霸氣。要信心十足,要相信自己已經(jīng)讀了一千天的初中,進行了三百多天的復習,做了三千至四千道初中數(shù)學題,養(yǎng)兵千日,用兵一時,現(xiàn)在是收獲的時候,自己會取得好成績的。

3、看完書后,把課本放起來,做習題,通過做習題來再一次檢查自己哪些地方做的不夠好,如果碰到不會的地方,可以再看課本,這樣以來,相信會給你留下深刻的印象。

數(shù)學答題技巧

1、直接推演法

直接從命題給出的條件出發(fā),運用概念、公式、定理等進行推理或運算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法。

2、驗證法

由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。

3、特殊元素法

用合適的特殊元素(如數(shù)或圖形)代入題設條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。

4、排除法

對于正確答案有且只有一個的選擇題,根據(jù)數(shù)學知識或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。

5、圖解法

借助于符合題設條件的圖形或圖象的性質(zhì)、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。

數(shù)學北師大版必修二提綱相關(guān)文章

北師大高一數(shù)學必修2第二章解析幾何知識點

初二數(shù)學知識點北師大版

備考資料

北師大小學數(shù)學教學大綱

北師大高中數(shù)學必修2試題

北師大版初中數(shù)學知識點提綱

北師大版初二數(shù)學下冊知識點歸納

北師大版二年級數(shù)學教材

北師大版小學數(shù)學上冊知識點總結(jié)歸納

北師大版高一數(shù)學必修一集合知識點

數(shù)學北師大版必修二提綱

很多的學生對于數(shù)學都感到頭痛,因為數(shù)學的分數(shù)每次都不高,并且很多的知識點都不太懂,下面小編給大家分享一些數(shù)學北師大版必修二提綱,希望能夠幫助大家,歡迎閱讀!數(shù)學北師大版必修二提綱一、直線與方程(1)直
推薦度:
點擊下載文檔文檔為doc格式

精選文章

  • 高中數(shù)學必修一函數(shù)提綱
    高中數(shù)學必修一函數(shù)提綱

    數(shù)學是中考的重要項目,想要學好數(shù)學一定要找對學習方法,正確的方法將幫助我們進步。下面小編給大家分享一些高中數(shù)學必修一函數(shù)提綱,希望能夠幫

  • 魯教版八年級上冊數(shù)學提綱
    魯教版八年級上冊數(shù)學提綱

    隨著年級的不同,所接觸的數(shù)學課本知識難度也會有所變化,要適應這些變化就要學會做提綱,下面小編給大家分享一些魯教版八年級上冊數(shù)學提綱,希望

  • 北師大版七年級數(shù)學下冊復習提綱
    北師大版七年級數(shù)學下冊復習提綱

    很多剛從小學升初中的同學們都覺得數(shù)學變難了,有些學生就是這樣慢慢的跟不上老師步伐,其實這是不會做提綱造成的,以下是小編給大家整理的北師大

  • 人教版七年級上冊數(shù)學學生提綱
    人教版七年級上冊數(shù)學學生提綱

    初中數(shù)學內(nèi)容多而雜,其基礎知識和基本技能又分散覆蓋在三年的教科書中,學生往往學了新的,忘了舊的。以下是小編給大家整理的人教版七年級上冊數(shù)

1106876