學(xué)習(xí)啦>學(xué)習(xí)方法>備考資料>

必修二數(shù)學(xué)復(fù)習(xí)提綱

時(shí)間: 自暢4594 分享

學(xué)數(shù)學(xué)要做好課前預(yù)習(xí),掌握聽課主動(dòng)權(quán)。課前準(zhǔn)備的好壞,直接影響聽課的效果。那么你知道必修二數(shù)學(xué)復(fù)習(xí)提綱有哪些嗎?這次小編給大家整理了必修二數(shù)學(xué)復(fù)習(xí)提綱,供大家閱讀參考。

必修二數(shù)學(xué)復(fù)習(xí)提綱

目錄

必修二數(shù)學(xué)復(fù)習(xí)提綱

學(xué)習(xí)數(shù)學(xué)小竅門

學(xué)數(shù)學(xué)方法有哪些

必修二數(shù)學(xué)復(fù)習(xí)提綱

直線與方程

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點(diǎn)的直線的斜率公式:

注意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無(wú)關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

(3)直線方程

①點(diǎn)斜式:直線斜率k,且過點(diǎn)

注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。

當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

②斜截式:,直線斜率為k,直線在y軸上的截距為b

③兩點(diǎn)式:()直線兩點(diǎn),

④截矩式:

其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。

⑤一般式:(A,B不全為0)

注意:各式的適用范圍特殊的方程如:

平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

(5)直線系方程:即具有某一共同性質(zhì)的直線

(一)平行直線系

平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

(二)垂直直線系

垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

(三)過定點(diǎn)的直線系

(ⅰ)斜率為k的直線系:,直線過定點(diǎn);

(ⅱ)過兩條直線,的交點(diǎn)的直線系方程為

(為參數(shù)),其中直線不在直線系中。

(6)兩直線平行與垂直

當(dāng),時(shí),;

注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。

(7)兩條直線的交點(diǎn)

相交

交點(diǎn)坐標(biāo)即方程組的一組解。

方程組無(wú)解;方程組有無(wú)數(shù)解與重合

(8)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),

(9)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離

(10)兩平行直線距離公式

在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。

二、圓的方程

1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。

2、圓的方程

(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

(2)一般方程

當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為

當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形。

(3)求圓方程的方法

一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來(lái)確定圓心的位置。

3、直線與圓的位置關(guān)系:

直線與圓的位置關(guān)系有相離,相切,相交三種情況:

(1)設(shè)直線,圓,圓心到l的距離為,則有;;

(2)過圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程

(3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。

設(shè)圓,兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。

當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;

當(dāng)時(shí)兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;

當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓。

注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線

圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)

三、立體幾何初步

1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

(1)棱柱:

幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

(3)棱臺(tái):

幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。

(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。

(6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。

(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

注:正視圖反映了物體的高度和長(zhǎng)度;俯視圖反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測(cè)畫法

斜二測(cè)畫法特點(diǎn):①原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;

②原來(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。

4、柱體、錐體、臺(tái)體的表面積與體積

(1)幾何體的表面積為幾何體各個(gè)面的面積的和。

(2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高,為斜高,l為母線)

(3)柱體、錐體、臺(tái)體的體積公式

(4)球體的表面積和體積公式:V=;S=

4、空間點(diǎn)、直線、平面的位置關(guān)系

公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi)。

應(yīng)用:判斷直線是否在平面內(nèi)

用符號(hào)語(yǔ)言表示公理1:

公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線

符號(hào):平面α和β相交,交線是a,記作α∩β=a。

符號(hào)語(yǔ)言:

公理2的作用:

①它是判定兩個(gè)平面相交的方法。

②它說(shuō)明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線x共點(diǎn)。

③它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù)。

公理3:經(jīng)過不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。

推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。

公理3及其推論作用:

①它是空間內(nèi)確定平面的依據(jù)

②它是證明平面重合的依據(jù)

公理4:平行于同一條直線的兩條直線互相平行

空間直線與直線之間的位置關(guān)系

①異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線

②異面直線性質(zhì):既不平行,又不相交。

③異面直線判定:過平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過該店的直線是異面直線

④異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說(shuō)這兩條異面直線互相垂直。

求異面直線所成角步驟:

A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。

B、證明作出的角即為所求角

C、利用三角形來(lái)求角

(7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ)。

(8)空間直線與平面之間的位置關(guān)系

直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn).

三種位置關(guān)系的符號(hào)表示:aαa∩α=Aa‖α

(9)平面與平面之間的位置關(guān)系:平行——沒有公共點(diǎn);α‖β

相交——有一條公共直線。α∩β=b

5、空間中的平行問題

(1)直線與平面平行的判定及其性質(zhì)

線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。

線線平行線面平行

線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。線面平行線線平行

(2)平面與平面平行的判定及其性質(zhì)

兩個(gè)平面平行的判定定理

(1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行

(線面平行→面面平行),

(2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行。

(線線平行→面面平行),

(3)垂直于同一條直線的兩個(gè)平面平行,

兩個(gè)平面平行的性質(zhì)定理

(1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行。(面面平行→線面平行)

(2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行。(面面平行→線線平行)

7、空間中的垂直問題

(1)線線、面面、線面垂直的定義

①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說(shuō)這兩條異面直線互相垂直。

②線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說(shuō)這條直線和這個(gè)平面垂直。

③平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。

(2)垂直關(guān)系的判定和性質(zhì)定理

①線面垂直判定定理和性質(zhì)定理

判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面。

性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。

②面面垂直的判定定理和性質(zhì)定理

判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。

性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面。

9、空間角問題

(1)直線與直線所成的角

①兩平行直線所成的角:規(guī)定為。

②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。

③兩條異面直線所成的角:過空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

(2)直線和平面所成的角

①平面的平行線與平面所成的角:規(guī)定為。

②平面的垂線與平面所成的角:規(guī)定為。

③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角。

求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”。

在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,

在解題時(shí),注意挖掘題設(shè)中兩個(gè)主要信息:

(1)斜線上一點(diǎn)到面的垂線;

(2)過斜線上的一點(diǎn)或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。

(3)二面角和二面角的平面角

①二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。

②二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。

③直二面角:平面角是直角的二面角叫直二面角。

兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角

④求二面角的方法

定義法:在棱上選擇有關(guān)點(diǎn),過這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角

垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角

<<<返回目錄

學(xué)習(xí)數(shù)學(xué)小竅門

建立數(shù)學(xué)糾錯(cuò)本。

把平時(shí)容易出現(xiàn)錯(cuò)誤的知識(shí)或推理記載下來(lái),以防再犯。爭(zhēng)取做到:找錯(cuò)、析錯(cuò)、改錯(cuò)、防錯(cuò)。達(dá)到:能從反面入手深入理解正確東西;能由果朔因把錯(cuò)誤原因弄個(gè)水落石出、以便對(duì)癥下藥;解答問題完整、推理嚴(yán)密。

限時(shí)訓(xùn)練。

可以找一組題(比如10道選擇題),爭(zhēng)取限定一個(gè)時(shí)間完成;也可以找1道大題,限時(shí)完成。這主要是創(chuàng)設(shè)一種考試情境,檢驗(yàn)自己在緊張狀態(tài)下的思維水平。

調(diào)整心態(tài),正確對(duì)待考試。

首先,應(yīng)把主要精力放在基礎(chǔ)知識(shí)、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對(duì)于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。

<<<返回目錄

學(xué)數(shù)學(xué)方法有哪些

第一,興趣。

如今的家庭和學(xué)校對(duì)孩子的期望很高,而且女生的性格普遍較為文靜,心理不夠強(qiáng)大,還有的就是數(shù)學(xué)這科目難度相對(duì)來(lái)說(shuō)較高,很容易會(huì)導(dǎo)致女生對(duì)數(shù)學(xué)的興趣降低。

所以說(shuō),作為老師應(yīng)該多關(guān)心她們的學(xué)習(xí)情況,多與她們交流科目上的內(nèi)容,了解她們的想法,只有理解她們的想法才能有效的制定相應(yīng)的學(xué)習(xí)計(jì)劃,為她們驅(qū)除緊張的情緒,從而達(dá)到一個(gè)好的學(xué)習(xí)狀態(tài)。與此同時(shí),作為家長(zhǎng)的應(yīng)該多關(guān)心孩子的情況,不要一看到成績(jī)不好就開口訓(xùn)斥,這樣對(duì)孩子的心理會(huì)造成一定的影響,甚至可能削弱孩子對(duì)數(shù)學(xué)的興趣。我們應(yīng)該用積極的態(tài)度去對(duì)待孩子的學(xué)習(xí),女生的情感與男生不同,她們對(duì)于感興趣的,一般會(huì)更有耐心克服困難,達(dá)到自己的目標(biāo)。

第二,自信。

女生的形象思維能力一般比男生要差,邏輯思維能力也如此,所以容易造成沒有信心的現(xiàn)象。事實(shí)上,女生在運(yùn)算準(zhǔn)確率方面是很高的,也比較規(guī)范,所以我們看到女生的數(shù)學(xué)答題大都很工整,其實(shí)這是一個(gè)優(yōu)點(diǎn)。

所謂每個(gè)人都有優(yōu)缺點(diǎn),我們不應(yīng)該因?yàn)樽约旱娜秉c(diǎn)而妄自菲薄,而是應(yīng)該努力克服缺點(diǎn),增強(qiáng)自己的自信心,在學(xué)習(xí)上應(yīng)該多了解通解通法,還有一些常用的數(shù)學(xué)公式,解題技巧,還有解題速度。很多女生解數(shù)學(xué)題的速度都不快,甚至有些女生到時(shí)間了還有幾道大題沒做,這樣丟分是讓人很遺憾的。

第三,學(xué)習(xí)方法。

很多女生在學(xué)習(xí)數(shù)學(xué)的時(shí)候喜歡按部就班,注重基礎(chǔ),但是卻很少做難題,所以便導(dǎo)致了解題能力薄弱。女生上課的時(shí)候很認(rèn)真,復(fù)習(xí)的時(shí)候喜歡看筆記和書本,但是卻忽視了對(duì)自己能力的訓(xùn)練,所以導(dǎo)致了自己適應(yīng)性比較差。

所以,女生應(yīng)該從這幾點(diǎn)下手,多下功夫,對(duì)于難題我們不要害怕,但是也不能一味地做難題,適當(dāng)?shù)挠?xùn)練,對(duì)于自己的數(shù)學(xué)能力是有很大提升的。還有,女生在學(xué)習(xí)數(shù)學(xué)的時(shí)候應(yīng)該多向男生學(xué)習(xí),學(xué)習(xí)他們的一些優(yōu)秀技巧,進(jìn)而轉(zhuǎn)化為自己的學(xué)習(xí)技巧,結(jié)合在做題上,多訓(xùn)練,相信對(duì)自己的數(shù)學(xué)水平是有很大幫助的。

第四,課前預(yù)習(xí)。

正所謂“笨鳥先飛”,我們經(jīng)過預(yù)習(xí)可以提前對(duì)新內(nèi)容有一個(gè)大概的了解,從而在聽課的時(shí)候能夠有的放矢,對(duì)自己不了解的知識(shí)點(diǎn)著重注意,很可能會(huì)有奇效。而提前預(yù)習(xí),還能對(duì)女生的心理有一個(gè)暗示,對(duì)女生的信心提高也是有極大的好處。

<<<返回目錄

必修二數(shù)學(xué)復(fù)習(xí)提綱相關(guān)文章

2022高一必修二數(shù)學(xué)知識(shí)點(diǎn)歸納

數(shù)學(xué)北師大版必修二提綱

高二年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)及復(fù)習(xí)資料

高一數(shù)學(xué)必修二知識(shí)點(diǎn)

人教版高二數(shù)學(xué)必修二知識(shí)點(diǎn)

數(shù)學(xué)必修二第一章知識(shí)點(diǎn)

高一數(shù)學(xué)必修二平面知識(shí)點(diǎn)詳解

高二數(shù)學(xué)考點(diǎn)知識(shí)點(diǎn)總結(jié)復(fù)習(xí)大綱

高中數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)

高一數(shù)學(xué)必修二所有公式總結(jié)

1112866