學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>初二學(xué)習(xí)方法>八年級(jí)數(shù)學(xué)>

浙教版八年級(jí)上數(shù)學(xué)期末試卷

時(shí)間: 妙純901 分享

  關(guān)鍵的八年級(jí)數(shù)學(xué)期末考試就臨近了,認(rèn)真認(rèn)真來答卷;輕輕松松來應(yīng)對(duì),道道題你都答對(duì);祝你考出好成績!小編整理了關(guān)于浙教版八年級(jí)上數(shù)學(xué)期末試卷,希望對(duì)大家有幫助!

  浙教版八年級(jí)上數(shù)學(xué)期末試題

  一、選擇題(每小題只有一個(gè)選項(xiàng)符合題意,請(qǐng)將你認(rèn)為正確的選項(xiàng)字母填入下表空格內(nèi),每小題3分,共30分)

  1.在以下永潔環(huán)保、綠色食品、節(jié)能、綠色環(huán)保四個(gè)標(biāo)志中,是軸對(duì)稱圖形是(  )

  A. B. C. D.

  2.使分式 有意義,則x的取值范圍是(  )

  A.x≠1 B.x>1 C.x<1 D.x≠﹣1

  3.如圖,已知點(diǎn)A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個(gè)條件是(  )

  A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF

  4.如果一個(gè)三角形的兩邊長分別為2和4,則第三邊長可能是(  )

  A.2 B.4 C.6 D.8

  5.在分式 中,若將x、y都擴(kuò)大為原來的2倍,則所得分式的值(  )

  A.不變 B.是原來的2倍 C.是原來的4倍 D.無法確定

  6.若x2﹣kxy+9y2是一個(gè)完全平方式,則k的值為(  )

  A.3 B.±6 C.6 D.+3

  7.等腰三角形的一個(gè)角是50°,則它一腰上的高與底邊的夾角是(  )

  A.25° B.40° C.25°或40° D.不能確定

  8.若分式 ,則分式 的值等于(  )

  A.﹣ B. C.﹣ D.

  9.四個(gè)學(xué)生一起做乘法(x+3)(x+a),其中a>0,最后得出下列四個(gè)結(jié)果,其中正確的結(jié)果是(  )

  A.x2﹣2x﹣15 B.x2+8x+15 C.x2+2x﹣15 D.x2﹣8x+15

  10.如圖,AB=AC,AB的垂直平分線交AB于D,交AC于E,BE恰好平分∠ABC,有以下結(jié)論:

  (1)ED=EC;(2)△ABC的周長等于2AE+EC;(3)圖中共有3個(gè)等腰三角形;(4)∠A=36°,

  其中正確的共有(  )

  A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)

  二、填空題(每小題3分,共18分)

  11.分解因式:am2﹣4an2=      .

  12.已知一個(gè)多邊形的內(nèi)角和是外角和的 ,則這個(gè)多邊形的邊數(shù)是      .

  13.如圖,△ABC≌△DCB,A、B的對(duì)應(yīng)頂點(diǎn)分別為點(diǎn)D、C,如果AB=7cm,BC=12cm,AC=9cm,DO=2cm,那么OC的長是      cm.

  14.若分式 的值為零,則x的值為      .

  15.如圖,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,則CD=      .

  16.如圖,在ABC中,AP=DP,DE=DF,DE⊥AB于E,DF⊥AC于F,則下列結(jié)論:

 ?、貯D平分∠BAC;②△BED≌△FPD;③DP∥AB;④DF是PC的垂直平分線.

  其中正確的是      .

  三、解答題(共8個(gè)小題,共72分)

  17.分解因式:

  (1)2x2+4x+2

  (2)16(a+b)2﹣9(a﹣b)2.

  18.解方程:

  (1) =

  (2) + =1.

  19.(1)化簡:( ﹣1)÷

  (2)先化簡,再求值: + ,其中a=3,b=1.

  20.如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)分別為A(2,3),B(3,1),C(﹣2,﹣2).

  (1)請(qǐng)?jiān)趫D中作出△ABC關(guān)于y軸的軸對(duì)稱圖形△DEF(A,B、C的對(duì)稱點(diǎn)分別是D、E,F(xiàn)),并直接寫出D、E、F的坐標(biāo).

  (2)求△ABC的面積.

  21.(1)將多項(xiàng)式3x2+bx+c分解因式的結(jié)果是:3(x﹣3)(x+2),求b,c的值.

  (2)畫圖:牧童在A處放牛,其家在B處,若牧童從A處將牛牽到河邊C處飲水后再回家,試問C在何處,所走路程最短?(保留作圖痕跡)

  22.如圖,△ABC中,AD是高,AE、BF是角平分線,它們相交于點(diǎn)O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度數(shù).

  23.某一工程,在工程招標(biāo)時(shí),接到甲,乙兩個(gè)工程隊(duì)的投標(biāo)書.施工一天,需付甲工程隊(duì)工程款1.2萬元,乙工程隊(duì)工程款0.5萬元.工程領(lǐng)導(dǎo)小組根據(jù)甲,乙兩隊(duì)的投標(biāo)書測算,有如下方案:

  (1)甲隊(duì)單獨(dú)完成這項(xiàng)工程剛好如期完成;

  (2)乙隊(duì)單獨(dú)完成這項(xiàng)工程要比規(guī)定日期多用6天;

  (3)若甲,乙兩隊(duì)合做3天,余下的工程由乙隊(duì)單獨(dú)做也正好如期完成.

  試問:在不耽誤工期的前提下,你覺得哪一種施工方案最節(jié)省工程款?請(qǐng)說明理由.

  24.已知△ABC為等邊三角形,點(diǎn)D為直線BC上的一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合),以AD為邊作等邊△ADE(頂點(diǎn)A、D、E按逆時(shí)針方向排列),連接CE.

  (1)如圖1,當(dāng)點(diǎn)D在邊BC上時(shí),求證:①BD=CE,②AC=CE+CD;

  (2)如圖2,當(dāng)點(diǎn)D在邊BC的延長線上且其他條件不變時(shí),結(jié)論AC=CE+CD是否成立?若不成立,請(qǐng)寫出AC、CE、CD之間存在的數(shù)量關(guān)系,并說明理由.

  浙教版八年級(jí)上數(shù)學(xué)期末試卷參考答案

  一、選擇題(每小題只有一個(gè)選項(xiàng)符合題意,請(qǐng)將你認(rèn)為正確的選項(xiàng)字母填入下表空格內(nèi),每小題3分,共30分)

  1.在以下永潔環(huán)保、綠色食品、節(jié)能、綠色環(huán)保四個(gè)標(biāo)志中,是軸對(duì)稱圖形是(  )

  A. B. C. D.

  【考點(diǎn)】軸對(duì)稱圖形.

  【分析】據(jù)軸對(duì)稱圖形的概念求解.如果一個(gè)圖形沿著一條直線對(duì)折后兩部分完全重合,這樣的圖形叫做軸對(duì)稱圖形,這條直線叫做對(duì)稱軸.

  【解答】解:A、不是軸對(duì)稱圖形,不符合題意;

  B、是軸對(duì)稱圖形,符合題意;

  C、不是軸對(duì)稱圖形,不符合題意;

  D、不是軸對(duì)稱圖形,不符合題意.

  故選B.

  【點(diǎn)評(píng)】本題主要考查軸對(duì)稱圖形的知識(shí)點(diǎn).確定軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合.

  2.使分式 有意義,則x的取值范圍是(  )

  A.x≠1 B.x>1 C.x<1 D.x≠﹣1

  【考點(diǎn)】分式有意義的條件.

  【分析】根據(jù)分式有意義的條件是分母不等于0可得x﹣1≠0,再解即可.

  【解答】解:由題意得:x﹣1≠0,

  解得:x≠1,

  故選:A.

  【點(diǎn)評(píng)】此題主要考查了分式有意義的條件,關(guān)鍵是掌握分式有意義的條件是分母不等于0.

  3.如圖,已知點(diǎn)A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個(gè)條件是(  )

  A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF

  【考點(diǎn)】全等三角形的判定.

  【分析】全等三角形的判定方法SAS是指有兩邊對(duì)應(yīng)相等,且這兩邊的夾角相等的兩三角形全等,已知AB=DE,BC=EF,其兩邊的夾角是∠B和∠E,只要求出∠B=∠E即可.

  【解答】解:A、根據(jù)AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本選項(xiàng)錯(cuò)誤;

  B、∵在△ABC和△DEF中

  ,

  ∴△ABC≌△DEF(SAS),故本選項(xiàng)正確;

  C、∵BC∥EF,

  ∴∠F=∠BCA,根據(jù)AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本選項(xiàng)錯(cuò)誤;

  D、根據(jù)AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本選項(xiàng)錯(cuò)誤.

  故選B.

  【點(diǎn)評(píng)】本題考查了對(duì)平行線的性質(zhì)和全等三角形的判定的應(yīng)用,注意:有兩邊對(duì)應(yīng)相等,且這兩邊的夾角相等的兩三角形才全等,題目比較典型,但是一道比較容易出錯(cuò)的題目.

  4.如果一個(gè)三角形的兩邊長分別為2和4,則第三邊長可能是(  )

  A.2 B.4 C.6 D.8

  【考點(diǎn)】三角形三邊關(guān)系.

  【分析】已知三角形的兩邊長分別為2和4,根據(jù)在三角形中任意兩邊之和>第三邊,任意兩邊之差<第三邊;即可求第三邊長的范圍.

  【解答】解:設(shè)第三邊長為x,則由三角形三邊關(guān)系定理得4﹣2

  因此,本題的第三邊應(yīng)滿足2

  2,6,8都不符合不等式2

  故選B.

  【點(diǎn)評(píng)】本題考查了三角形三邊關(guān)系,此題實(shí)際上就是根據(jù)三角形三邊關(guān)系定理列出不等式,然后解不等式即可.

  5.在分式 中,若將x、y都擴(kuò)大為原來的2倍,則所得分式的值(  )

  A.不變 B.是原來的2倍 C.是原來的4倍 D.無法確定

  【考點(diǎn)】分式的基本性質(zhì).

  【分析】根據(jù)分式的分子分母同時(shí)乘以或除以同一個(gè)不為零的整式,結(jié)果不變,可得答案.

  【解答】解:分式 中,若將x、y都擴(kuò)大為原來的2倍,則所得分式的值不變.

  故選:A.

  【點(diǎn)評(píng)】本題考查了分式的基本性質(zhì),分式的分子分母同時(shí)乘以或除以同一個(gè)不為零的整式,結(jié)果不變.

  6.若x2﹣kxy+9y2是一個(gè)完全平方式,則k的值為(  )

  A.3 B.±6 C.6 D.+3

  【考點(diǎn)】完全平方式.

  【分析】根據(jù)首末兩項(xiàng)是x和3y的平方,那么中間項(xiàng)為加上或減去x和3y的乘積的2倍,進(jìn)而得出答案.

  【解答】解:∵x2﹣kxy+9y2是完全平方式,

  ∴﹣kxy=±2×3y•x,

  解得k=±6.

  故選:B.

  【點(diǎn)評(píng)】本題主要考查了完全平方公式,根據(jù)兩平方項(xiàng)確定出這兩個(gè)數(shù),再根據(jù)乘積二倍項(xiàng)求解是解題關(guān)鍵.

  7.等腰三角形的一個(gè)角是50°,則它一腰上的高與底邊的夾角是(  )

  A.25° B.40° C.25°或40° D.不能確定

  【考點(diǎn)】等腰三角形的性質(zhì);三角形內(nèi)角和定理.

  【專題】計(jì)算題.

  【分析】題中沒有指明該角是頂角還是底角,則應(yīng)該分情況進(jìn)行分析,從而得到答案.

  【解答】解:當(dāng)?shù)捉鞘?0°時(shí),則它一腰上的高與底邊的夾角是90°﹣50°=40°;

  當(dāng)頂角是50°時(shí),則它的底角就是 =65°則它一腰上的高與底邊的夾角是90°﹣65°=25°;

  故選C.

  【點(diǎn)評(píng)】此題主要考查了學(xué)生的三角形的內(nèi)角和定理:三角形的內(nèi)角和為180°

  8.若分式 ,則分式 的值等于(  )

  A.﹣ B. C.﹣ D.

  【考點(diǎn)】分式的值.

  【分析】根據(jù)已知條件,將分式 整理為y﹣x=2xy,再代入則分式 中求值即可.

  【解答】解:整理已知條件得y﹣x=2xy;

  ∴x﹣y=﹣2xy

  將x﹣y=﹣2xy整體代入分式得

  =

  =

  =

  = .

  故答案為B.

  【點(diǎn)評(píng)】由題干條件找出x﹣y之間的關(guān)系,然后將其整體代入求出答案即可.

  9.四個(gè)學(xué)生一起做乘法(x+3)(x+a),其中a>0,最后得出下列四個(gè)結(jié)果,其中正確的結(jié)果是(  )

  A.x2﹣2x﹣15 B.x2+8x+15 C.x2+2x﹣15 D.x2﹣8x+15

  【考點(diǎn)】多項(xiàng)式乘多項(xiàng)式.

  【分析】利用多項(xiàng)式與多項(xiàng)式相乘的法則求解即可.

  【解答】解:(x+3)(x+a)=x2+(3+a)x+3a,

  ∵a>0,

  ∴(x+3)(x+a)=x2+(3+a)x+3a=x2+8x+15,

  故選:B.

  【點(diǎn)評(píng)】本題主要考查了多項(xiàng)式乘多項(xiàng)式,解題的關(guān)鍵是正確的計(jì)算.

  10.如圖,AB=AC,AB的垂直平分線交AB于D,交AC于E,BE恰好平分∠ABC,有以下結(jié)論:

  (1)ED=EC;(2)△ABC的周長等于2AE+EC;(3)圖中共有3個(gè)等腰三角形;(4)∠A=36°,

  其中正確的共有(  )

  A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)

  【考點(diǎn)】線段垂直平分線的性質(zhì);等腰三角形的判定與性質(zhì).

  【分析】(1)由角平分線的性質(zhì)可判定ED≠EC;(2)由垂直平分線的性質(zhì)可知AE=EB,則有AE+EB+AB=AE+AE+AE+EC=3AE+EC,可判斷出(2);(3)可判定△ABE、△ABC、△BEC為等腰三角形;(4)由(3)可求得∠A;可得出答案.

  【解答】解:(1)由題意可知DE⊥AB,BE平分∠ABC,

  ∴當(dāng)EC⊥BC時(shí),有ED=EC,

  ∵AB=AC,

  ∴∠ACB不可能等于90°,

  ∴ED=EC不正確;

  (2)∵E在線段AB的垂直平分線上,

  ∴EA=EB,

  ∴EA+EB+AB=EA+EA+AB=2EA+AB,

  ∵AB=AC,且AC=AE+EC,

  ∴EA+EB+AB=3AE+EC,

  ∴(2)不正確;

  (3)∵AB=AC,

  ∴△ABC為等腰三角形,∠C=∠ABC,

  ∵EA=EB,

  ∴△EAB為等腰三角形,∠A=∠ABE,

  ∵BE平分∠ABC,

  ∴∠ABE=∠CBE,

  ∴∠C=2∠CBE,

  又∠BEC=∠A+∠ABE=2∠CBE,

  ∴∠BEC=∠C,

  ∴BE=BC,

  ∴△BEC為等腰三角形,

  ∴圖中共有3個(gè)等腰三角形,

  ∴(3)正確;

  (4)由(3)可得∠BEC=∠C=2∠EBC,

  ∴2∠EBC+2∠EBC+∠EBC=180°,

  ∴∠EBC=36°,

  ∴∠A=∠ABE=∠EBC=36°,

  ∴(4)正確;

  ∴正確的有(3)(4)共兩個(gè),

  故選C.

  【點(diǎn)評(píng)】本題主要考查線段垂直平分線的性質(zhì)和等腰三角形的判定和性質(zhì),掌握線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等是解題的關(guān)鍵,注意三角形內(nèi)角和定理的應(yīng)用.

  二、填空題(每小題3分,共18分)

  11.分解因式:am2﹣4an2= a(m+2n)(m﹣2n) .

  【考點(diǎn)】提公因式法與公式法的綜合運(yùn)用.

  【分析】首先提取公因式a,再利用平方差公式進(jìn)行二次分解即可.

  【解答】解:am2﹣4an2=a(m2﹣4n2)=a(m+2n)(m﹣2n),

  故答案為:a(m+2n)(m﹣2n).

  【點(diǎn)評(píng)】本題考查了用提公因式法和公式法進(jìn)行因式分解,一個(gè)多項(xiàng)式有公因式首先提取公因式,然后再用其他方法進(jìn)行因式分解,同時(shí)因式分解要徹底,直到不能分解為止.

  12.已知一個(gè)多邊形的內(nèi)角和是外角和的 ,則這個(gè)多邊形的邊數(shù)是 5 .

  【考點(diǎn)】多邊形內(nèi)角與外角.

  【分析】根據(jù)內(nèi)角和等于外角和之間的關(guān)系列出有關(guān)邊數(shù)n的方程求解即可.

  【解答】解:設(shè)該多邊形的邊數(shù)為n

  則(n﹣2)×180= ×360

  解得:n=5

  故答案為5.

  【點(diǎn)評(píng)】本題考查了多邊形的內(nèi)角與外角,解題的關(guān)鍵是牢記多邊形的內(nèi)角和與外角和.

  13.如圖,△ABC≌△DCB,A、B的對(duì)應(yīng)頂點(diǎn)分別為點(diǎn)D、C,如果AB=7cm,BC=12cm,AC=9cm,DO=2cm,那么OC的長是 7 cm.

  【考點(diǎn)】全等三角形的性質(zhì).

  【專題】計(jì)算題.

  【分析】根據(jù)△ABC≌△DCB可證明△AOB≌△DOC,從而根據(jù)已知線段即可求出OC 的長.

  【解答】解:由題意得:AB=DC,∠A=∠D,∠AOB=∠DOC,

  ∴△AOB≌△DOC,

  ∴OC=BO=BD﹣DO=AC﹣OD=7.

  故答案為:7.

  【點(diǎn)評(píng)】本題考查全等三角形的性質(zhì),比較簡單在,注意掌握幾種判定全等的方法.

  14.若分式 的值為零,則x的值為 1 .

  【考點(diǎn)】分式的值為零的條件.

  【專題】計(jì)算題.

  【分析】分式的值為0的條件是:(1)分子=0;(2)分母≠0.兩個(gè)條件需同時(shí)具備,缺一不可.據(jù)此可以解答本題.

  【解答】解: ,

  則|x|﹣1=0,即x=±1,

  且x+1≠0,即x≠﹣1.

  故x=1.

  故若分式 的值為零,則x的值為1.

  【點(diǎn)評(píng)】由于該類型的題易忽略分母不為0這個(gè)條件,所以常以這個(gè)知識(shí)點(diǎn)來命題.

  15.如圖,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,則CD= 3 .

  【考點(diǎn)】含30度角的直角三角形.

  【分析】由于∠C=90°,∠ABC=60°,可以得到∠A=30°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=30°,∴BD=AD=6,再由30°角所對(duì)的直角邊等于斜邊的一半即可求出結(jié)果.

  【解答】解:∵∠C=90°,∠ABC=60°,

  ∴∠A=30°,

  ∵BD平分∠ABC,

  ∴∠CBD=∠ABD=∠A=30°,

  ∴BD=AD=6,

  ∴CD= BD=6× =3.

  故答案為:3.

  【點(diǎn)評(píng)】本題利用了直角三角形的性質(zhì)和角的平分線的性質(zhì)求解.

  16.如圖,在ABC中,AP=DP,DE=DF,DE⊥AB于E,DF⊥AC于F,則下列結(jié)論:

  ①AD平分∠BAC;②△BED≌△FPD;③DP∥AB;④DF是PC的垂直平分線.

  其中正確的是?、佗邸?

  【考點(diǎn)】全等三角形的判定與性質(zhì);角平分線的性質(zhì);線段垂直平分線的性質(zhì).

  【專題】幾何圖形問題.

  【分析】根據(jù)角平分線性質(zhì)得到AD平分∠BAC,由于題目沒有給出能夠證明∠C=∠DPF的條件,無法根據(jù)全等三角形的判定證明△BED≌△FPD,以及DF是PC的垂直平分線,先根據(jù)等腰三角形的性質(zhì)可得∠PAD=∠ADP,進(jìn)一步得到∠BAD=∠ADP,再根據(jù)平行線的判定可得DP∥AB.

  【解答】解:∵DE=DF,DE⊥AB于E,DF⊥AC于F,

  ∴AD平分∠BAC,故①正確;

  由于題目沒有給出能夠證明∠C=∠DPF的條件,只能得到一個(gè)直角和一條邊對(duì)應(yīng)相等,故無法根據(jù)全等三角形的判定證明△BED≌△FPD,以及DF是PC的垂直平分線,故②④錯(cuò)誤;

  ∵AP=DP,

  ∴∠PAD=∠ADP,

  ∵AD平分∠BAC,

  ∴∠BAD=∠CAD,

  ∴∠BAD=∠ADP,

  ∴DP∥AB,故③正確.

  故答案為:①③.

  【點(diǎn)評(píng)】考查了全等三角形的判定與性質(zhì),角平分線的性質(zhì),線段垂直平分線的性質(zhì),等腰三角形的性質(zhì)和平行線的判定,綜合性較強(qiáng),但是難度不大.

  三、解答題(共8個(gè)小題,共72分)

  17.分解因式:

  (1)2x2+4x+2

  (2)16(a+b)2﹣9(a﹣b)2.

  【考點(diǎn)】提公因式法與公式法的綜合運(yùn)用.

  【專題】計(jì)算題;因式分解.

  【分析】(1)原式提取2,再利用完全平方公式分解即可;

  (2)原式利用平方差公式分解即可.

  【解答】解:(1)原式=2(x2+2x+1)=2(x+1)2;

  (2)原式=[4(a+b)+3(a﹣b)][4(a+b)﹣3(a﹣b)]=(7a+b)(a+7b).

  【點(diǎn)評(píng)】此題考查了提公因式法與公式法的綜合運(yùn)用,熟練掌握因式分解的方法是解本題的關(guān)鍵.

  18.解方程:

  (1) =

  (2) + =1.

  【考點(diǎn)】解分式方程.

  【專題】計(jì)算題;分式方程及應(yīng)用.

  【分析】兩分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解.

  【解答】解:(1)去分母得:2x=3x﹣15,

  解得:x=15,

  經(jīng)檢驗(yàn)x=15是分式方程的解;

  (2)去分母得:x2+2x+1+x﹣2=x2﹣x﹣2,

  解得:x=﹣ ,

  經(jīng)檢驗(yàn)x=﹣ 是分式方程的解.

  【點(diǎn)評(píng)】此題考查了解分式方程,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.解分式方程一定注意要驗(yàn)根.

  19.(1)化簡:( ﹣1)÷

  (2)先化簡,再求值: + ,其中a=3,b=1.

  【考點(diǎn)】分式的化簡求值;分式的混合運(yùn)算.

  【分析】(1)先算括號(hào)里面的,再算除法即可;

  (2)先根據(jù)分式混合2運(yùn)算的法則把原式進(jìn)行化簡,再把a(bǔ)、b的值代入進(jìn)行計(jì)算即可.

  【解答】解:(1)原式= •

  =﹣1;

  (2)原式= +

  =

  = ,

  當(dāng)a=3,b=1時(shí),原式= = = .

  【點(diǎn)評(píng)】本題考查的是分式的化簡求值,熟知分式混合運(yùn)算的法則是解答此題的關(guān)鍵.

  20.如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)分別為A(2,3),B(3,1),C(﹣2,﹣2).

  (1)請(qǐng)?jiān)趫D中作出△ABC關(guān)于y軸的軸對(duì)稱圖形△DEF(A,B、C的對(duì)稱點(diǎn)分別是D、E,F(xiàn)),并直接寫出D、E、F的坐標(biāo).

  (2)求△ABC的面積.

  【考點(diǎn)】作圖-軸對(duì)稱變換.

  【專題】作圖題.

  【分析】(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C關(guān)于y軸對(duì)稱的對(duì)應(yīng)點(diǎn)D、E、F的位置,然后順次連接即可;

  (2)利用三角形所在的矩形的面積減去四周三個(gè)小直角三角形的面積列式計(jì)算即可得解.

  【解答】解:(1)△DEF如圖所示,D(﹣2,3),E(﹣3,1),F(xiàn)(2,﹣2);

  (2)△ABC的面積=5×5﹣ ×4×5﹣ ×5×3﹣ ×1×2

  =25﹣10﹣7.5﹣1

  =25﹣18.5

  =6.5.

  【點(diǎn)評(píng)】本題考查了利用軸對(duì)稱變換作圖,三角形的面積,熟練掌握網(wǎng)格結(jié)構(gòu)準(zhǔn)確找出對(duì)應(yīng)點(diǎn)的位置是解題的關(guān)鍵,(2)網(wǎng)格圖中三角形的面積的求法需熟練掌握并靈活運(yùn)用.

  21.(1)將多項(xiàng)式3x2+bx+c分解因式的結(jié)果是:3(x﹣3)(x+2),求b,c的值.

  (2)畫圖:牧童在A處放牛,其家在B處,若牧童從A處將牛牽到河邊C處飲水后再回家,試問C在何處,所走路程最短?(保留作圖痕跡)

  【考點(diǎn)】軸對(duì)稱-最短路線問題;因式分解-十字相乘法等.

  【分析】(1)直接利用多項(xiàng)式乘法去括號(hào)整理求出即可;

  (2)作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′,連接A′B交l于點(diǎn)C,則C點(diǎn)即為所求點(diǎn).

  【解答】解:(1)∵3x2+bx+c=3(x﹣3)(x+2)=3(x2﹣x﹣6)=3x2﹣3x﹣18,

  ∴b=﹣3,c=﹣18;

  (2)作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′,連接A′B交l于點(diǎn)C,點(diǎn)C就是所求的點(diǎn).

  【點(diǎn)評(píng)】此題主要考查了多項(xiàng)式乘法和軸對(duì)稱﹣?zhàn)疃搪肪€問題,以及軸對(duì)稱圖形在實(shí)際生活中的應(yīng)用,但軸對(duì)稱圖形的畫法、兩點(diǎn)之間線段最短是解答此題的關(guān)鍵.

  22.如圖,△ABC中,AD是高,AE、BF是角平分線,它們相交于點(diǎn)O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度數(shù).

  【考點(diǎn)】三角形的角平分線、中線和高.

  【分析】先利用三角形內(nèi)角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根據(jù)角平分線定義可求∠CBF、∠EAF,可得∠DAE的度數(shù);然后利用三角形外角性質(zhì),可先求∠AFB,再次利用三角形外角性質(zhì),容易求出∠BOA.

  【解答】解:∵∠A=50°,∠C=60°

  ∴∠ABC=180°﹣50°﹣60°=70°,

  又∵AD是高,

  ∴∠ADC=90°,

  ∴∠DAC=180°﹣90°﹣∠C=30°,

  ∵AE、BF是角平分線,

  ∴∠CBF=∠ABF=35°,∠EAF=25°,

  ∴∠DAE=∠DAC﹣∠EAF=5°,

  ∠AFB=∠C+∠CBF=60°+35°=95°,

  ∴∠BOA=∠EAF+∠AFB=25°+95°=120°,

  ∴∠DAC=30°,∠BOA=120°.

  故∠DAE=5°,∠BOA=120°.

  【點(diǎn)評(píng)】本題考查了三角形內(nèi)角和定理、角平分線定義、三角形外角性質(zhì).關(guān)鍵是利用角平分線的性質(zhì)解出∠EAF、∠CBF,再運(yùn)用三角形外角性質(zhì)求出∠AFB.

  23.某一工程,在工程招標(biāo)時(shí),接到甲,乙兩個(gè)工程隊(duì)的投標(biāo)書.施工一天,需付甲工程隊(duì)工程款1.2萬元,乙工程隊(duì)工程款0.5萬元.工程領(lǐng)導(dǎo)小組根據(jù)甲,乙兩隊(duì)的投標(biāo)書測算,有如下方案:

  (1)甲隊(duì)單獨(dú)完成這項(xiàng)工程剛好如期完成;

  (2)乙隊(duì)單獨(dú)完成這項(xiàng)工程要比規(guī)定日期多用6天;

  (3)若甲,乙兩隊(duì)合做3天,余下的工程由乙隊(duì)單獨(dú)做也正好如期完成.

  試問:在不耽誤工期的前提下,你覺得哪一種施工方案最節(jié)省工程款?請(qǐng)說明理由.

  【考點(diǎn)】分式方程的應(yīng)用.

  【專題】方案型.

  【分析】關(guān)鍵描述語為:“甲,乙兩隊(duì)合做3天,余下的工程由乙隊(duì)單獨(dú)做也正好如期完成”;說明甲隊(duì)實(shí)際工作了3天,乙隊(duì)工作了x天完成任務(wù),工作量=工作時(shí)間×工作效率等量關(guān)系為:甲3天的工作量+乙規(guī)定日期的工作量=1列方程.

  再看費(fèi)用情況:方案(1)、(3)不耽誤工期,符合要求,可以求費(fèi)用,方案(2)顯然不符合要求.

  【解答】解:設(shè)規(guī)定日期為x天.由題意得

  + + =1,

  .

  3(x+6)+x2=x(x+6),

  3x=18,

  解之得:x=6.

  經(jīng)檢驗(yàn):x=6是原方程的根.

  方案(1):1.2×6=7.2(萬元);

  方案(2)比規(guī)定日期多用6天,顯然不符合要求;

  方案(3):1.2×3+0.5×6=6.6(萬元).

  ∵7.2>6.6,

  ∴在不耽誤工期的前提下,選第三種施工方案最節(jié)省工程款.

  【點(diǎn)評(píng)】找到合適的等量關(guān)系是解決問題的關(guān)鍵.在既有工程任務(wù),又有工程費(fèi)用的情況下.先考慮完成工程任務(wù),再考慮工程費(fèi)用.

  24.已知△ABC為等邊三角形,點(diǎn)D為直線BC上的一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合),以AD為邊作等邊△ADE(頂點(diǎn)A、D、E按逆時(shí)針方向排列),連接CE.

  (1)如圖1,當(dāng)點(diǎn)D在邊BC上時(shí),求證:①BD=CE,②AC=CE+CD;

  (2)如圖2,當(dāng)點(diǎn)D在邊BC的延長線上且其他條件不變時(shí),結(jié)論AC=CE+CD是否成立?若不成立,請(qǐng)寫出AC、CE、CD之間存在的數(shù)量關(guān)系,并說明理由.

  【考點(diǎn)】全等三角形的判定與性質(zhì);等邊三角形的性質(zhì).

  【分析】(1)①根據(jù)等邊三角形的性質(zhì)就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,進(jìn)而就可以得出△ABD≌△ACE;

  ②由△ABD≌△ACE就可以得出BC=DC+CE;

  (2)由等邊三角形的性質(zhì)就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,進(jìn)而就可以得出△ABD≌△ACE,就可以得出BC+CD=CE

  【解答】解:(1)①∵△ABC和△ADE是等邊三角形,

  ∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.

  ∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,

  ∴∠BAD=∠EAC.

  在△ABD和△ACE中,

  ,

  ∴△ABD≌△ACE(SAS).

 ?、凇摺鰽BD≌△ACE,

  ∴BD=CE.

  ∵BC=BD+CD,

  ∴BC=CE+CD.

  (2)BC+CD=CE.

  ∵△ABC和△ADE是等邊三角形,

  ∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.

  ∴∠BAC+∠DAC=∠DAE+∠DAC,

  ∴∠BAD=∠EAC.

  在△ABD和△ACE中,

  ,

  ∴△ABD≌△ACE(SAS).

  ∴BD=CE.

  ∵BD=BC+CD,

  ∴CE=BC+CD.

  【點(diǎn)評(píng)】本題考查了等邊三角形的性質(zhì)的運(yùn)用,等式的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,解答時(shí)證明三角形全等是關(guān)鍵.

  看了“浙教版八年級(jí)上數(shù)學(xué)期末試卷”的人還看了:

1.人教版八年級(jí)上冊(cè)數(shù)學(xué)期末試卷及答案

2.人教版八年級(jí)上數(shù)學(xué)期末試卷及答案

3.人教版八年級(jí)上冊(cè)數(shù)學(xué)期末試卷

4.浙教版八年級(jí)下冊(cè)數(shù)學(xué)期末試卷及答案

5.浙教版八年級(jí)下冊(cè)數(shù)學(xué)期末試卷

2659685