2018考研數(shù)學證明題怎么復習好
考研數(shù)學中,證明題是大多數(shù)考生感到無從下手的題目。證明題應該如何復習高效率呢?下面就是學習啦小編給大家整理的考研數(shù)學證明題復習方法,希望對你有用!
考研數(shù)學證明題復習方法
1.結合幾何意義記住零點存在定理、中值定理、泰勒公式、極限存在的兩個準則等基本原理,包括條件及結論。
知道基本原理是證明的基礎,知道的程度(即就是對定理理解的深入程度)不同會導致不同的推理能力。如2006年數(shù)學一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因為數(shù)學推理是環(huán)環(huán)相扣的,如果第一步未得到結論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準則之一:單調有界數(shù)列必有極限。只要知道這個準則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,“單調性”與“有界性”都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。
2.借助幾何意義尋求證明思路
一個證明題,大多時候是能用其幾何意義來正確解釋的,當然最為基礎的是要正確理解題目文字的含義。如2007年數(shù)學一第19題是一個關于中值定理的證明題,可以在直角坐標系中畫出滿足題設條件的函數(shù)草圖,再聯(lián)系結論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點外還有一個函數(shù)值相等的點,那就是兩個函數(shù)分別取最大值的點(正確審題:兩個函數(shù)取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個零點,兩次應用羅爾中值定理就能得到所證結論。再如2005年數(shù)學一第18題(1)是關于零點存在定理的證明題,只要在直角坐標系中結合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個函數(shù)圖形有交點,這就是所證結論,重要的是寫出推理過程。從圖形也應該看到兩函數(shù)在兩個端點處大小關系恰好相反,也就是差函數(shù)在兩個端點的值是異號的,零點存在定理保證了區(qū)間內(nèi)有零點,這就證得所需結果。如果第二步實在無法完滿解決問題的話,轉第三步。
3.逆推法
從結論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應用不等式證明的一般步驟就能解決問題:即從結論出發(fā)構造函數(shù),利用函數(shù)的單調性推出結論。在判定函數(shù)的單調性時需借助導數(shù)符號與單調性之間的關系,正常情況只需一階導的符號就可判斷函數(shù)的單調性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導數(shù)的符號判定一階導數(shù)的單調性,再用一階導的符號判定原來函數(shù)的單調性,從而得所要證的結果。該題中可設F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。
對于那些經(jīng)常使用如上方法的考生來說,利用三步走就能輕松收獲數(shù)學證明的12分,但對于從心理上就不自信能解決證明題的考生來說,卻常常輕易丟失12分,后一部分同學請按“證明三步走”來建立自信心,以阻止考試分數(shù)的白白流失。
2018考研數(shù)學證明題的命題特點
1 極限的四則運算法則
2 極限的脫帽定理
3 無窮小的定階定理
4 函數(shù)連續(xù)性定理的證明
5 函數(shù)奇偶性與周期性的證明
6 費馬定理、柯西定理及牛頓萊布尼茨定理的證明
7 洛必達法則證明
8 函數(shù)凹凸性判定法則的證明
9 不等式的證明與方程根的證明
10 含有一個中值或者兩個中值的證明
11 關于定積分等式與不等式的證明
12 定積分重要性質與結論的證明
13 曲線積分與路徑無關性的證明(數(shù)學一)
14 格林公式與高斯定理的證明(數(shù)學一)
15 證明常數(shù)項級數(shù)的收斂性
16 矩陣秩的相關證明
17 證明向量小組線性無關
18 證明方程組的基礎解系及性質
19 證明兩個矩陣相似與合同的方法
20 證明矩陣是正定矩陣的方法
21 證明函數(shù)為隨機變量的分布函數(shù)的方法
22 證明兩個隨機變量相互獨立與不相關
23 證明一個統(tǒng)計量服從卡方分布、t分布及F分布
24 證明一個估計量為無偏估計
2018考研數(shù)學證明題答題步驟
▶第一步:首先要記住零點存在定理,介值定理,中值定理、極限存在的兩個準則等基本原理,包括條件及結論,中值定理最好能記住他們的推到過程,有時可以借助幾何意義去記憶。
因為知道基本原理是證明的基礎,知道的程度(即就是對定理理解的深入程度)不同會導致不同的推理能力。如2006年數(shù)學一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。
因為數(shù)學推理是環(huán)環(huán)相扣的,如果第一步未得到結論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準則之一:單調有界數(shù)列必有極限。只要知道這個準則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,"單調性"與"有界性"都是很好驗證的。再比如2009年直接讓考生證明拉格朗日中值定理;但是像這樣直接可以利用基本原理的證明題在考研真題中并不是很多見,更多的是要用到第二步。
▶第二步:可以試著借助幾何意義尋求證明思路,以構造出所需要的輔助函數(shù)。
一個證明題,大多時候是能用其幾何意義來正確解釋的,當然最為基礎的是要正確理解題目文字的含義。如2007年數(shù)學一第19題是一個關于中值定理的證明題,可以在直角坐標系中畫出滿足題設條件的函數(shù)草圖,再聯(lián)系結論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點外還有一個函數(shù)值相等的點,那就是兩個函數(shù)分別取最大值的點(正確審題:兩個函數(shù)取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個零點,兩次應用羅爾中值定理就能得到所證結論。
再如2005年數(shù)學一第18題(1)是關于零點存在定理的證明題,只要在直角坐標系中結合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個函數(shù)圖形有交點,這就是所證結論,重要的是寫出推理過程。從圖形也應該看到兩函數(shù)在兩個端點處大小關系恰好相反,也就是差函數(shù)在兩個端點的值是異號的,零點存在定理保證了區(qū)間內(nèi)有零點,這就證得所需結果。如果第二步實在無法完滿解決問題的話,轉第三步。
▶第三步:從要證的結論出發(fā),去尋求我們所需要的構造輔助函數(shù),我們稱之為"逆推"。
如2004年第15題是不等式證明題,該題只要應用不等式證明的一般步驟就能解決問題:即從結論出發(fā)構造函數(shù),利用函數(shù)的單調性推出結論。
在判定函數(shù)的單調性時需借助導數(shù)符號與單調性之間的關系,正常情況只需一階導的符號就可判斷函數(shù)的單調性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導數(shù)的符號判定一階導數(shù)的單調性,再用一階導的符號判定原來函數(shù)的單調性,從而得所要證的結果。
猜你喜歡: