學(xué)習(xí)啦>學(xué)習(xí)方法>教學(xué)方法>

高中數(shù)學(xué)函數(shù)復(fù)習(xí)有哪些教案

時間: 欣怡1112 分享

  教案是教師對一節(jié)課的整體設(shè)想,創(chuàng)造性的教學(xué)設(shè)計,嚴(yán)謹(jǐn)、科學(xué)、有序的教學(xué)策略,能夠有效的提高教學(xué)效率。以下是學(xué)習(xí)啦小編分享給大家的高中數(shù)學(xué)函數(shù)復(fù)習(xí)教案,希望可以幫到你!

  高中數(shù)學(xué)函數(shù)復(fù)習(xí)教案一

  一、教學(xué)目標(biāo)

  1、知識與技能:

  (1)建立增(減)函數(shù)的概念

  通過觀察一些函數(shù)圖象的特征,形成增(減)函數(shù)的直觀認(rèn)識. 再通過具體函

  數(shù)值的大小比較,認(rèn)識函數(shù)值隨自變量的增大(減小)的規(guī)律,由此得出增(減)函數(shù)單調(diào)性的定義 . 掌握用定義證明函數(shù)單調(diào)性的步驟。

  (2)函數(shù)單調(diào)性的研究經(jīng)歷了從直觀到抽象,以圖識數(shù)的過程,在這個過程中,讓學(xué)生通過自主探究活動,體驗數(shù)學(xué)概念的形成過程的真諦。

  2、過程與方法

  (1)通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性及其幾何意義;

  (2)學(xué)會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì);

  (3)能夠熟練應(yīng)用定義判斷與證明函數(shù)在某區(qū)間上的單調(diào)性.

  3、情態(tài)與價值,使學(xué)生感到學(xué)習(xí)函數(shù)單調(diào)性的必要性與重要性,增強學(xué)習(xí)

  函數(shù)的緊迫感.

  二、教學(xué)重點與難點

  重點:函數(shù)的單調(diào)性及其幾何意義.

  難點:利用函數(shù)的單調(diào)性定義判斷、證明函數(shù)的單調(diào)性.

  三、學(xué)法與教學(xué)用具

  1、從觀察具體函數(shù)圖象引入,直觀認(rèn)識增減函數(shù),利用這定義證明函數(shù)單調(diào)性。通過練習(xí)、交流反饋,鞏固從而完成本節(jié)課的教學(xué)目標(biāo)。

  2、教學(xué)用具:投影儀、計算機.

  四、教學(xué)思路:

  (一)創(chuàng)設(shè)情景,揭示課題

  觀察下列各個函數(shù)的圖象,并說說它們分別反映了相應(yīng)函數(shù)的哪些變化規(guī)律。

  以上就是育德教育為大家準(zhǔn)備的高中數(shù)學(xué)教師試講教案,希望大家都能通過試講環(huán)節(jié)。

  高中數(shù)學(xué)函數(shù)復(fù)習(xí)教案二

  一、教學(xué)背景

  《同角三角函數(shù)基本關(guān)系式》是人教版高中數(shù)學(xué)必修第四冊第一章第二節(jié)中的內(nèi)容。本節(jié)課的內(nèi)容在教材中有著承上啟下的作用,是在學(xué)習(xí)了任意角和弧度,并了解正弦、余弦、正切的基本概念之后進(jìn)行教學(xué)的,同時同角三角函數(shù)的基本關(guān)系也為之后學(xué)習(xí)兩角和差公式奠定了基礎(chǔ),起著銜接作用。運用同角三角函數(shù)關(guān)系,能夠更好的解決有關(guān)三角函數(shù)中求同角的其他三角函數(shù)值使解題更方便。學(xué)生在獲得三角函數(shù)定義的過程中已經(jīng)充分認(rèn)識到了借助單位圓、利用數(shù)形結(jié)合思想是研究三角函數(shù)的重要工具。本節(jié)課內(nèi)容中所體現(xiàn)的數(shù)學(xué)思想與方法在整個中學(xué)數(shù)學(xué)學(xué)習(xí)中起重要作用。

  高中學(xué)生已經(jīng)具備了初等代數(shù)、初等幾何的相關(guān)知識,以及一定的抽象思維能力和邏輯推理能力。學(xué)生已經(jīng)比較熟練的掌握了三角函數(shù)定義的兩種推導(dǎo)方法,從方法上看,學(xué)生已經(jīng)對數(shù)形結(jié)合,猜想證明有所了解。從學(xué)習(xí)情感方面看,大部分學(xué)生愿意主動學(xué)習(xí)。從能力上看,學(xué)生主動學(xué)習(xí)能力、探究能力較弱。因而通過本節(jié)課的學(xué)習(xí),學(xué)生能較好地培養(yǎng)學(xué)生的思維能力、推理能力、探究能力及創(chuàng)新意識。

  根據(jù)新課標(biāo)的要求,以及對教材和學(xué)情的分析,我確立了如下三維教學(xué)目標(biāo):

  1、知識與技能目標(biāo):掌握三種基本關(guān)系式之間的聯(lián)系,熟練掌握已知一個角的三角函數(shù)值求其它三角函數(shù)值的方法。

  2、過程與方法目標(biāo):牢固掌握同角三角函數(shù)的八個關(guān)系式,并能靈活運用于解題,提高學(xué)生分析、解決三角的思維能力,能靈活運用同角三角函數(shù)關(guān)系式的不同變形,提高三角恒等變形的能力。

  3、情感與態(tài)度目標(biāo):通過用數(shù)學(xué)知識解決實際問題,讓學(xué)生體會數(shù)學(xué)與自然及人類社會的密切聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,增強學(xué)生學(xué)習(xí)數(shù)學(xué)的信心。

  根據(jù)本節(jié)課的地位和作用以及新課程標(biāo)準(zhǔn)的具體要求,確定本節(jié)課的重點為:同角三角函數(shù)基本關(guān)系式sin2α+cos2α=1;tanα=sinα/cosα的運用。教學(xué)難點為:理三角函數(shù)值的符號的確定,同角三角函數(shù)的基本關(guān)系式的變式應(yīng)用。

  二、活動評價

  在課堂教學(xué)過程中,我將對學(xué)生的學(xué)習(xí)情況進(jìn)行及時而有效的評價。注重課程中的過程性評價,無論是在學(xué)生開始遇到問題、產(chǎn)生疑惑、給出猜想的時候,還是在逐步思考、交流、探索的教學(xué)過程中,我都會注重對于學(xué)生學(xué)習(xí)成果的評價。比如,在課堂討論較難理解的問題時,我將先請一位平時善于解決數(shù)學(xué)問題的學(xué)生來回答,并請其他同學(xué)對其進(jìn)行評價,然后再請大家給出不同的意見,從而形成良性的互動,在學(xué)生們的思維碰撞之中,正確、完善的結(jié)論將自然形成。從始至終,我都將貫徹以學(xué)生為主體、教師為主導(dǎo)的教學(xué)思想。

  三、課程設(shè)計

  在新課改理念的指導(dǎo)下,針對本課的教學(xué)目標(biāo)和重難點,我將采用故事法、探究法、自主學(xué)習(xí)和合作探究等教學(xué)法,先從一個情境問題出發(fā),然后引導(dǎo)學(xué)生循序漸進(jìn)地對一組問題進(jìn)行思考和探究,逐步歸納總結(jié)出同角三角函數(shù)的基本關(guān)系式,并在期間采用學(xué)生自評、小組互評、教師評價等多種方式,培養(yǎng)學(xué)生積極主動參與學(xué)習(xí)的興趣。下面我將詳細(xì)闡述本節(jié)課的教學(xué)過程。

  1、趣味導(dǎo)入:上課伊始,我會通過多媒體講述“蝴蝶效應(yīng)”的故事,引導(dǎo)學(xué)生理解事物是普遍聯(lián)系的觀點,如果說南美亞馬遜雨林中的一只蝴蝶與北美德克薩斯的龍卷風(fēng)這兩種看來是毫不相干的事物,都會有這樣的聯(lián)系,那么同一個角的三角函數(shù)應(yīng)當(dāng)也會有著非常密切的關(guān)系。通過這樣的故事導(dǎo)入,能夠激發(fā)學(xué)生的學(xué)習(xí)興趣和探索熱情,活躍其思維,為本節(jié)課的學(xué)習(xí)埋下伏筆。

  2、溫故知新:在這一環(huán)節(jié),我將引導(dǎo)學(xué)生回顧三種常見三角函數(shù)的概念,單位圓中的任意角概念,以及初中學(xué)段學(xué)習(xí)的同角三角函數(shù)的兩個基本關(guān)系式,進(jìn)而引導(dǎo)學(xué)生思考如何證明任意角的三角函數(shù)也具備相應(yīng)的基本關(guān)系。在這個過程中,我會請不同層次的學(xué)生起來回答,并請其他學(xué)生進(jìn)行補充,引導(dǎo)全體學(xué)生進(jìn)行復(fù)習(xí)和思考。學(xué)生依據(jù)以往證明三角函數(shù)平方關(guān)系的思路,能夠較快想到利用單位圓中的勾股定理關(guān)系,證明得到sin2α+cos2α=1,同樣的,根據(jù)任意角的正切函數(shù)定義,得到tanα=sinα/cosα。

  接下來,我將引導(dǎo)學(xué)生思考例1,(已知sinα=3/5,且α是第二象限角,求角α的余弦和正切值。)學(xué)生可能會躍躍欲試,先用平方關(guān)系式計算余弦值,但卻會遇到開方時判別正負(fù)號的問題,于是才會根據(jù)α是第二象限角這個條件進(jìn)行判斷。這時我將會引導(dǎo)學(xué)生學(xué)會先判斷任意角的區(qū)間及其三角函數(shù)的符號,再利用公式進(jìn)行計算的解題思路。這樣學(xué)生就能夠更輕松地探索出例2的解答方法。例2當(dāng)中,由于根據(jù)余弦值的范圍,確定α可能在第二或第三象限出現(xiàn),于是學(xué)生就能夠想到采用分類思想進(jìn)行解答。通過學(xué)生的自主思考和我的適當(dāng)引導(dǎo),可以自然而然地突破本課的難點。

  3、歸納總結(jié)

  經(jīng)過前面的師生共同參與的探究討論,就逐步歸納總結(jié)出了同角三角函數(shù)的基本關(guān)系式。在這個過程中,我會根據(jù)不同學(xué)生的特點,分別請他們發(fā)言,并請其他同學(xué)進(jìn)行補充,在師生互動中,共同推導(dǎo)出結(jié)論,這種方法既可以有效地突出本課的重點,又自然而然地突破了本課的難點。

  4、實踐應(yīng)用

  為鞏固所學(xué)知識,我會從教材中分梯度選取習(xí)題,給學(xué)生進(jìn)行課堂練習(xí),并請2-3位同學(xué)在黑板上完成,在練習(xí)后我會進(jìn)行及時講解。

  在布置作業(yè)時,為了使所有學(xué)生都能夠根據(jù)自身情況鞏固所學(xué)知識,我將布置一類“必做題”和一類“探究題”,其中“探究題”是提供給那些學(xué)有余力的學(xué)生在課余時間完成的,幫助其拓展思維,培養(yǎng)興趣。

  6、課程總結(jié)

  本節(jié)課的內(nèi)容是極富探索性,我通過提問式復(fù)習(xí)和情境問題導(dǎo)入,學(xué)生產(chǎn)生好奇心和探索熱情。接著,以學(xué)生為主體,我來引導(dǎo)學(xué)生根據(jù)已學(xué)的知識和方法,循序漸進(jìn)地進(jìn)行探究,逐步歸納總結(jié)出同角三角函數(shù)的基本關(guān)系式,從而自然地完成本課的教學(xué)過程,同時幫助學(xué)生體會數(shù)形結(jié)合的思想方法。

  在板書設(shè)計方面,我會用簡潔、工整的方式給出相關(guān)探究問題,同時以多媒體輔助展示平移動畫,便于學(xué)生進(jìn)行觀察和探究。

  四、教學(xué)體會

  本節(jié)課我主要采用的是“引導(dǎo)發(fā)現(xiàn)、合作探究”的教學(xué)方法,以學(xué)生熟知的足球運動為情境引入新課,以問題為載體,以師生合作探究為主線,以思維訓(xùn)練為核心,以能力發(fā)展為目標(biāo),充分調(diào)動一切可利用的因素,激發(fā)學(xué)生的參與意識,使學(xué)生經(jīng)歷知識的形成、發(fā)展和應(yīng)用的過程,在和諧、愉悅的氛圍中獲取知識,掌握方法。整個教學(xué)中既突出了學(xué)生的主體地位,又發(fā)揮了教師的指導(dǎo)作用。在課堂隨機提問以及討論結(jié)果的過程中,我采用多層次多角度的評價方式,不僅能促使學(xué)生思考問題,掌握學(xué)習(xí)知識的技巧和方法,還能調(diào)動學(xué)生積極性,激發(fā)課堂氣氛。

  高中三角函數(shù)公式

  兩角和公式

  sin(A+B)=sinAcosB+cosAsinB

  sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB

  cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)

  tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB-1)/(cotB+cotA)

  cot(A-B)=(cotAcotB+1)/(cotB-cotA)

  倍角公式

  tan2A=2tanA/[1-(tanA)^2]

  cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

  半角公式

  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

  cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))

  和差化積

  2sinAcosB=sin(A+B)+sin(A-B)

  2cosAsinB=sin(A+B)-sin(A-B) )

  2cosAcosB=cos(A+B)-sin(A-B)

  -2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2

  cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB

猜你喜歡:

1.高一物理第三章復(fù)習(xí)教案有哪些

2.高中數(shù)學(xué)有哪些學(xué)習(xí)方法與技巧

3.學(xué)生的學(xué)習(xí)高中數(shù)學(xué)的方式有哪些

4.高中數(shù)學(xué)課后高效復(fù)習(xí)五步法

5.高考數(shù)學(xué)函數(shù)的單調(diào)性必考知識點

3788136