高考數學復習知識點最新整理
高考復習,找到相關內容進行提前準備,抓住復習的主動權。那么數學如何復習?下面是小編為大家整理的關于高考數學復習知識點,希望對您有所幫助。歡迎大家閱讀參考學習!
高考數學復習知識點:一次函數圖像性質
1、y=kx時(即b等于0,y與x成正比,此時的圖象是一條經過原點的直線)
當k>0時,直線必通過一、三象限,y隨x的增大而增大;
當k<0時,直線必通過二、四象限,y隨x的增大而減小。
2、y=kx+b(k,b為常數,k≠0)時:
當k>0,b>0,這時此函數的圖象經過一,二,三象限;
當k>0,b<0,這時此函數的圖象經過一,三,四象限;
當k<0,b>0,這時此函數的圖象經過一,二,四象限;
當k<0,b<0,這時此函數的圖象經過二,三,四象限。
當b>0時,直線必通過一、二象限;
當b<0時,直線必通過三、四象限。
特別地,當b=0時,直線通過原點O(0,0)表示的是正比例函數的圖象。
這時,當k>0時,直線只通過一、三象限,不會通過二、四象限。當k<0時,直線只通過二、四象限,不會通過一、三象限。
3、直線y=kx+b中k、b的關系
k>0,b>0:經過第一、二、三象限
k>0,b<0:經過第一、三、四象限
k>0,b=0:經過第一、三象限(經過原點)
結論:k>0時,圖象從左到右上升,y隨x的增大而增大。
k<0b>0:經過第一、二、四象限
k<0,b<0:經過第二、三、四象限
k<0,b=0:經過第二、四象限(經過原點)
結論:k<0時,圖象從左到右下降,y隨x的增大而減小。
高考數學必考知識點:平面向量關系
1、若a=0,則對任一向量rb,有ra·rb=0。
2、若a≠0,則對任一非零向量b,有a·b≠0.錯(當a⊥b時,a·b=0)。
3、若a≠0,a·b=0,則b=0錯(當a和b都不為零,且a⊥b時,a·b=0)。
4、若a·b=0,則a·b中至少有一個為0.錯(可以都不為0,當a⊥b時,a·b=0成立)。
5、若a≠0,a·b=b·c,則a=c錯(當b=0時)。
6、若a·b=a·c,則b≠c,當且僅當a=0時成立.錯(a≠0且同時垂直于b,c時也成立)。
7、對任意向量a有a_a=∣a∣_∣a∣。
8、對任意向量始終有|a﹢b|≤|a|﹢|b||a-b|≥|a|-|b|
平面向量的線性運算:加法為三角形法則'平行四邊形法則'。定理:向量a與b共線,a不等于零,有且只有唯一一個實數c,使b=ca。
高考數學核心考點
再比如說像解析幾何這個內容,不管理科還是文科,像直線和圓肯定是非常重要的一個內容。理科和文科有一點差別了,比如說圓錐曲線方面,橢圓和拋物線理科必須達到的水平,雙曲線理科只是了解狀態(tài)就可以了。而文科呢?橢圓是要求達到理解水平,拋物線和雙曲線只是一般的了解狀態(tài)就可以了。這里需要有側重點。
拿具體知識來講,比如說直線當中,兩條直線的位置關系,平行、垂直的關系怎么判斷應該清楚。直線和圓的位置關系應該清楚,橢圓、雙曲線和拋物線的標準方程,參數之間的關系,再比如直線和橢圓的位置關系,這是值得我們特別關注的一個重要的知識內容。這是從我們的一個角度來說。
我們后面有六個大題,一般是側重于六個重要的板塊,因為現階段不可能一個章節(jié)從頭至尾,你沒有時間了,必須把最重要的知識板塊拿出來,比如說數列與函數以及不等式,這肯定是重要板塊。再比如說三角函數和平面向量應該是一個,解析幾何和平面幾何和平面向量肯定又是一個。再比如像立體幾何當中的空間圖形和平面圖形,這肯定是重要板塊。再后面是概率統(tǒng)計,在解決概率統(tǒng)計問題當中一般和計數原理綜合在一起,最后還有一個板塊是導數、函數、方程和不等式,四部分內容綜合在一起。
應當說我們后面六個大題基本上是圍繞著這樣六個板塊來進行。這六個板塊肯定是我們的核心內容之一。再比如說現在我們高考(課程)當中要體現對數學思想方法的考察,數學思想方法以前考察四個方面,函數和方程思想,數形結合思想,分類討論,等價轉換,現在又增加了三個,原來這四個方面當中有兩類做了改造。函數和方程思想,數形結合思想,分類討論改成了分類討論與整合,等價轉換轉為劃歸與轉化。有限和無限思想,特殊和一般的思想。
第一輪復習知識點總結
第一:高考數學中有函數、數列、三角函數、平面向量、不等式、立體幾何等九大章節(jié)。
主要是考函數和導數,這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數的性質,包括函數的單調性、奇偶性;第二是函數的解答題,重點考察的是二次函數和高次函數,分函數和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。
第二:平面向量和三角函數。
重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數的圖像和性質,這里重點掌握正弦函數和余弦函數的性質,第三,正弦定理和余弦定理來解三角形。難度比較小。
第三:數列。
數列這個板塊,重點考兩個方面:一個通項;一個是求和。
第四:空間向量和立體幾何。
在里面重點考察兩個方面:一個是證明;一個是計算。
第五:概率和統(tǒng)計。
這一板塊主要是屬于數學應用問題的范疇,當然應該掌握下面幾個方面,第一……等可能的概率,第二………事件,第三是獨立事件,還有獨立重復事件發(fā)生的概率。
第六:解析幾何。
這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量最高的題,當然這一類題,我總結下面五類常考的題型,包括第一類所講的直線和曲線的位置關系,這是考試最多的內容??忌鷳撜莆账耐ǚ?,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是2008年高考已經考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準確度,這是我們所講的第六大板塊。
第七:押軸題。
考生在備考復習時,應該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。
參數方程知識點
一般的,在平面直角坐標系中,如果曲線上任意一點的坐標x,y都是某個變數t的函數x=f(t)、y=g(t)
并且對于t的每一個允許值,由上述方程組所確定的點M(x,y)都在這條曲線上,那么上述方程則為這條曲線的參數方程,聯(lián)系x,y的變數t叫做變參數,簡稱參數,相對于參數方程而言,直接給出點的坐標間關系的方程叫做普通方程。(注意:參數是聯(lián)系變數x,y的橋梁,可以是一個有物理意義和幾何意義的變數,也可以是沒有實際意義的變數。
圓的參數方程x=a+rcosθy=b+rsinθ(a,b)為圓心坐標r為圓半徑θ為參數
橢圓的參數方程x=acosθy=bsinθa為長半軸長b為短半軸長θ為參數
雙曲線的參數方程x=asecθ(正割)y=btanθa為實半軸長b為虛半軸長θ為參數
拋物線的參數方程x=2pt?y=2ptp表示焦點到準線的距離t為參數
直線的參數方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直線經過(x',y'),且傾斜角為a,t為參數
高考數學復習知識點整理相關文章:
高考數學復習知識點最新整理





上一篇:高考數學知識點最新總結2020
下一篇:高考數學知識點總結最新整理