學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)>

三角函數(shù)的公式歸納總結(jié)

時(shí)間: 文瓊1297 分享

  三角函數(shù)的公式非常多,咋一看這么多的公式會(huì)讓同學(xué)們覺(jué)得這個(gè)知識(shí)點(diǎn)比較難,再加上三角函數(shù)本身就具有一定難度,很多人就覺(jué)得這個(gè)知識(shí)點(diǎn)非常不好學(xué)。下面是小編為大家整理的關(guān)于三角函數(shù)的公式歸納總結(jié),希望對(duì)您有所幫助。歡迎大家閱讀參考學(xué)習(xí)!

  倒數(shù)關(guān)系:

  tanα ·cotα=1

  sinα ·cscα=1

  cosα ·secα=1

  商的關(guān)系:

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方關(guān)系:

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  平常針對(duì)不同條件的常用的兩個(gè)公式

  sin^2(α)+cos^2(α)=1

  tan α _cot α=1

  一個(gè)特殊公式

  (sina+sinθ)_(sina-sinθ)=sin(a+θ)_sin(a-θ)

  證明:(sina+sinθ)_(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] _2 cos[(θ+a)/2] sin[(a-θ)/2]

  =sin(a+θ)_sin(a-θ)

  坡度公式

  我們通常半坡面的鉛直高度h與水平高度l的比叫做坡度(也叫坡比), 用字母i表示,

  即 i=h / l, 坡度的一般形式寫成 l : m 形式,如i=1:5.如果把坡面與水平面的夾角記作

  a(叫做坡角),那么 i=h/l=tan a.

  銳角三角函數(shù)公式

  正弦: sin α=∠α的對(duì)邊/∠α 的斜邊

  余弦:cos α=∠α的鄰邊/∠α的斜邊

  正切:tan α=∠α的對(duì)邊/∠α的鄰邊

  余切:cot α=∠α的鄰邊/∠α的對(duì)邊

  二倍角公式

  正弦

  sin2A=2sinA·cosA

  余弦

  1.Cos2a=Cos^2(a)-Sin^2(a)

  2.Cos2a=1-2Sin^2(a)

  3.Cos2a=2Cos^2(a)-1

  即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)

  正切

  tan2A=(2tanA)/(1-tan^2(A))

  三倍角公式

  sin3α=4sinα·sin(π/3+α)sin(π/3-α)

  cos3α=4cosα·cos(π/3+α)cos(π/3-α)

  tan3a = tan a · tan(π/3+a)· tan(π/3-a)

  半角公式

  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

  sin^2(a/2)=(1-cos(a))/2

  cos^2(a/2)=(1+cos(a))/2

  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

  和差化積

  sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

  sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

  cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

  cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

  兩角和公式

  tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)

  cos(α+β)=cosαcosβ-sinαsinβ

  cos(α-β)=cosαcosβ+sinαsinβ

  sin(α+β)=sinαcosβ+cosαsinβ

  sin(α-β)=sinαcosβ -cosαsinβ

  積化和差

  sinαsinβ =-[cos(α+β)-cos(α-β)] /2

  cosαcosβ = [cos(α+β)+cos(α-β)]/2

  sinαcosβ = [sin(α+β)+sin(α-β)]/2

  cosαsinβ = [sin(α+β)-sin(α-β)]/2

  公式一:

  設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

  sin(2kπ+α)= sinα

  cos(2kπ+α)= cosα

  tan(2kπ+α)= tanα

  cot(2kπ+α)= cotα

  公式二:

  設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

  sin(π+α)= -sinα

  cos(π+α)= -cosα

  tan(π+α)= tanα

  cot(π+α)= cotα

  公式三:

  任意角α與 -α的三角函數(shù)值之間的關(guān)系:

  sin(-α)= -sinα

  cos(-α)= cosα

  tan(-α)= -tanα

  cot(-α)= -cotα

  公式四:

  利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

  sin(π-α)= sinα

  cos(π-α)= -cosα

  tan(π-α)= -tanα

  cot(π-α)= -cotα

  公式五:

  利用公式-和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

  sin(2π-α)= -sinα

  cos(2π-α)= cosα

  tan(2π-α)= -tanα

  cot(2π-α)= -cotα

  公式六:

  π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:

  sin(π/2+α)= cosα

  cos(π/2+α)= -sinα

  tan(π/2+α)= -cotα

  cot(π/2+α)= -tanα

  sin(π/2-α)= cosα

  cos(π/2-α)= sinα

  tan(π/2-α)= cotα

  cot(π/2-α)= tanα

  sin(3π/2+α)= -cosα

  cos(3π/2+α)= sinα

  tan(3π/2+α)= -cotα

  cot(3π/2+α)= -tanα

  sin(3π/2-α)= -cosα

  cos(3π/2-α)= -sinα

  tan(3π/2-α)= cotα

  cot(3π/2-α)= tanα

  (以上k∈Z)


相關(guān)文章

1.高中數(shù)學(xué)必修三角函數(shù)常用公式總結(jié)

2.高二數(shù)學(xué)三角函數(shù)公式歸納

3.高中數(shù)學(xué)必修四三角函數(shù)萬(wàn)能公式歸納

4.高考數(shù)學(xué)三角函數(shù)公式口訣

5.高一數(shù)學(xué)必背公式及知識(shí)匯總

382271