學習啦 > 學習方法 > 初中學習方法 > 初一學習方法 > 七年級數(shù)學 >

七年級數(shù)學上學期期末復習訓練題

時間: 於寶21274 分享

  數(shù)學的學習在于反復的學習和練習,思維邏輯是需要活動大腦思維的,下面是小編給大家?guī)淼钠吣昙墧?shù)學上學期期末復習訓練題,希望能夠幫助到大家!

  七年級數(shù)學上學期期末復習訓練題

  一、選擇題(每小題3分,共30分):

  1.下列變形正確的是( )

  A.若x2=y2,則x=y B.若 ,則x=y

  C.若x(x-2)=5(2-x),則x= -5 D.若(m+n)x=(m+n)y,則x=y

  2.截止到2010年5月19日,已有21600名中外記者成為上海世博會的注冊記者,將21600用科學計數(shù)法表示為( )

  A.0.216×105 B.21.6×103 C.2.16×103 D.2.16×104

  3.下列計算正確的是( )

  A.3a-2a=1 B.x2y-2xy2= -xy2

  C.3a2+5a2=8a4 D.3ax-2xa=ax

  4.有理數(shù)a、b在數(shù)軸上表示如圖3所示,下列結(jié)論錯誤的是( )

  A.b

  C. D.

  5.已知關于x的方程4x-3m=2的解是x=m,則m的值是( )

  A.2 B.-2 C.2或7 D.-2或7

  6.下列說法正確的是( )

  A. 的系數(shù)是-2 B.32ab3的次數(shù)是6次

  C. 是多項式 D.x2+x-1的常數(shù)項為1

  7.用四舍五入把0.06097精確到千分位的近似值的有效數(shù)字是( )

  A.0,6,0 B.0,6,1,0 C.6,0,9 D.6,1

  8.某車間計劃生產(chǎn)一批零件,后來每小時多生產(chǎn)10件,用了12小時不但完成了任務,而且還多生產(chǎn)了60件,設原計劃每小時生產(chǎn)x個零件,這所列方程為( )

  A.13x=12(x+10)+60 B.12(x+10)=13x+60

  C. D.

  9.如圖,點C、O、B在同一條直線上,∠AOB=90°,

  ∠AOE=∠DOB,則下列結(jié)論:①∠EOD=90°;②∠COE=∠AOD;③∠COE=∠DOB;④∠COE+∠BOD=90°. 其中正確的個數(shù)是( )

  A.1 B.2 C.3 D.4

  10.如圖,把一張長方形的紙片沿著EF折疊,點C、D分別落在M、N的位置,且∠MFB= ∠MFE. 則∠MFB=( )

  A.30° B.36° C.45° D.72°

  二、填空題(每小題3分,共18分):

  11.x的2倍與3的差可表示為 .

  12.如果代數(shù)式x+2y的值是3,則代數(shù)式2x+4y+5的值是 .

  13.買一支鋼筆需要a元,買一本筆記本需要b元,那么買m支鋼筆和n本筆記本需要 元.

  14.如果5a2bm與2anb是同類項,則m+n= .

  15.900-46027/= ,1800-42035/29”= .

  16.如果一個角與它的余角之比為1∶2,則這個角是 度,這個角與它的補角之比是 .

  三、解答題(共8小題,72分):

  17.(共10分)計算:

  (1)-0.52+ ;

  (2) .

  18.(共10分)解方程:

  (1)3(20-y)=6y-4(y-11);

  (2) .

  19.(6分)如圖,求下圖陰影部分的面積.

  20.(7分)已知, A=3x2+3y2-5xy,B=2xy-3y2+4x2,求:

  (1)2A-B;(2)當x=3,y= 時,2A-B的值.

  21.(7分)如圖,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=

  14°,求∠AOB的度數(shù).

  22.(10分)如下圖是用棋子擺成的“T”字圖案.

  從圖案中可以看出,第1個“T”字型圖案需要5枚棋子,第2個“T”字型圖案需要8枚棋子,第3個“T”字型圖案需要11枚棋子.

  (1)照此規(guī)律,擺成第8個圖案需要幾枚棋子?

  (2)擺成第n個圖案需要幾枚棋子?

  (3)擺成第2010個圖案需要幾枚棋子?

  23.(10分)我市某中學每天中午總是在規(guī)定時間打開學校大門,七年級同學小明每天中午同一時間從家騎自行車到學校,星期一中午他以每小時15千米的速度到校,結(jié)果在校門口等了6分鐘才開門,星期二中午他以每小時9千米的速度到校,結(jié)果校門已開了6分鐘,星期三中午小明想準時到達學校門口,那么小明騎自行車的速度應該為每小時多少千米?

  根據(jù)下面思路,請完成此題的解答過程:

  解:設星期三中午小明從家騎自行車準時到達學校門口所用時間t小時,則星期一中午小明從家騎自行車到學校門口所用時間為 小時,星期二中午小明從家騎自行車到學校門口所用時間為 小時,由題意列方程得:

  24.(12分)如圖,射線OM上有三點A、B、C,滿足OA=20cm,AB=60cm,BC=10cm(如圖所示),點P從點O出發(fā),沿OM方向以1cm/秒的速度勻速運動,點Q從點C出發(fā)在線段CO上向點O勻速運動(點Q運動到點O時停止運動),兩點同時出發(fā).

  (1)當PA=2PB時,點Q運動到的

  位置恰好是線段AB的三等分

  點,求點Q的運動速度;

  (2)若點Q運動速度為3cm/秒,經(jīng)過多長時間P、Q兩點相距70cm?

  (3)當點P運動到線段AB上時,分別取OP和AB的中點E、F,求 的值.

  參考答案:

  一、選擇題:BDDCA,CDBCB.

  二、填空題:

  11.2x-3; 12.11 13.am+bn

  14.3 15.43033/,137024/31” 16.300.

  三、解答題:

  17.(1)-6.5; (2) .

  18.(1)y=3.2; (2)x=-1.

  19. .

  20.(1)2x2+9y2-12xy; (2)31.

  21.280.

  22.(1)26枚;

  (2)因為第[1]個圖案有5枚棋子,第[2]個圖案有(5+3×1)枚棋子,第[3]個圖案有(5+3×2)枚棋子,一次規(guī)律可得第[n]個圖案有[5+3×(n-1)=3n+2]枚棋子;

  (3)3×2010+2=6032(枚).

  23. ; ;由題意列方程得: ,解得:t=0.4,

  所以小明從家騎自行車到學校的路程為:15(0.4-0.1)=4.5(km),

  即:星期三中午小明從家騎自行車準時到達學校門口的速度為:

  4.5÷0.4=11.25(km/h).

  24.(1)①當P在線段AB上時,由PA=2PB及AB=60,可求得:

  PA=40,OP=60,故點P運動時間為60秒.

  若AQ= 時,BQ=40,CQ=50,點Q的運動速度為:

  50÷60= (cm/s);

  若BQ= 時,BQ=20,CQ=30,點Q的運動速度為:

  30÷60= (cm/s).

 ?、诋擯在線段延長線上時,由PA=2PB及AB=60,可求得:

  PA=120,OP=140,故點P運動時間為140秒.

  若AQ= 時,BQ=40,CQ=50,點Q的運動速度為:

  50÷140= (cm/s);

  若BQ= 時,BQ=20,CQ=30,點Q的運動速度為:

  30÷140= (cm/s).

  (2)設運動時間為t秒,則:

 ?、僭赑、Q相遇前有:90-(t+3t)=70,解得t=5秒;

 ?、谠赑、Q相遇后:當點Q運動到O點是停止運動時,點Q最多運動了30秒,而點P繼續(xù)40秒時,P、Q相距70cm,所以t=70秒,

  ∴經(jīng)過5秒或70秒時,P、Q相距70cm .

  (3)設OP=xcm,點P在線段AB上,20≦x≦80,OB-AP=80-(x-20)=100-x,EF=OF-OE=(OA+ )-OE=(20+30)- ,

  ∴ (OB-AP).

224197