初一數(shù)學(xué)下冊知識梳理
對世界上的一切學(xué)問與知識的掌握也并非難事,只要持之以恒地學(xué)習(xí),努力掌握規(guī)律,達(dá)到熟悉的境地,就能融會貫通,運(yùn)用自如。學(xué)習(xí)需要持之以恒。下面是小編給大家整理的一些初一數(shù)學(xué)的知識點,希望對大家有所幫助。
七年級數(shù)學(xué)知識點整理
生活中的軸對稱
1、軸對稱圖形:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。
2、軸對稱:對于兩個圖形,如果沿一條直線對折后,它們能互相重合,那么稱這兩個圖形成軸對稱,這條直線就是對稱軸??梢哉f成:這兩個圖形關(guān)于某條直線對稱。
3、軸對稱圖形與軸對稱的區(qū)別:軸對稱圖形是一個圖形,軸對稱是兩個圖形的關(guān)系。
聯(lián)系:它們都是圖形沿某直線折疊可以相互重合。
2、成軸對稱的兩個圖形一定全等。
3、全等的兩個圖形不一定成軸對稱。
4、對稱軸是直線。
5、角平分線的性質(zhì)
1、角平分線所在的直線是該角的對稱軸。
2、性質(zhì):角平分線上的點到這個角的兩邊的距離相等。
6、線段的垂直平分線
1、垂直于一條線段并且平分這條線段的直線叫做這條線段的垂直平分線,又叫線段的中垂線。
2、性質(zhì):線段垂直平分線上的點到這條線段兩端點的距離相等。
7、軸對稱圖形有:
等腰三角形(1條或3條)、等腰梯形(1條)、長方形(2條)、菱形(2條)、正方形(4條)、圓(無數(shù)條)、線段(1條)、角(1條)、正五角星。
8、等腰三角形性質(zhì):
①兩個底角相等。②兩個條邊相等。③“三線合一”。④底邊上的高、中線、頂角的平分線所在直線是它的對稱軸。
9、①“等角對等邊”∵∠B=∠C∴AB=AC
②“等邊對等角”∵AB=AC∴∠B=∠C
10、角平分線性質(zhì):
角平分線上的點到角兩邊的距離相等。
∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF
11、垂直平分線性質(zhì):垂直平分線上的點到線段兩端點的距離相等。
∵OC垂直平分AB∴AC=BC
12、軸對稱的性質(zhì)
1、兩個圖形沿一條直線對折后,能夠重合的點稱為對應(yīng)點(對稱點),能夠重合的線段稱為對應(yīng)線段,能夠重合的角稱為對應(yīng)角。2、關(guān)于某條直線對稱的兩個圖形是全等圖形。
2、如果兩個圖形關(guān)于某條直線對稱,那么對應(yīng)點所連的線段被對稱軸垂直平分。
3、如果兩個圖形關(guān)于某條直線對稱,那么對應(yīng)線段、對應(yīng)角都相等。
13、鏡面對稱
1.當(dāng)物體正對鏡面擺放時,鏡面會改變它的左右方向;
2.當(dāng)垂直于鏡面擺放時,鏡面會改變它的上下方向;
3.如果是軸對稱圖形,當(dāng)對稱軸與鏡面平行時,其鏡子中影像與原圖一樣;
學(xué)生通過討論,可能會找出以下解決物體與像之間相互轉(zhuǎn)化問題的辦法:
(1)利用鏡子照(注意鏡子的位置擺放);(2)利用軸對稱性質(zhì);
(3)可以把數(shù)字左右顛倒,或做簡單的軸對稱圖形;
(4)可以看像的背面;(5)根據(jù)前面的結(jié)論在頭腦中想象。
數(shù)學(xué)知識點七年級
二元一次方程組
1、含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程(linearequationsoftwounknowns)。
2、含有兩個未知數(shù)的兩個一次方程所組成的方程組叫做二元一次方程組。
3、二元一次方程組中兩個方程的公共解叫做二元一次方程組的解。
4、代入消元法:把二元一次方程中一個方程的一個未知數(shù)用含另一個未知數(shù)的式子表示出來,再帶入另一個方程,實現(xiàn)消元,進(jìn)而求得這個二元一次方程組的解。這種方法叫做代入消元法,簡稱代入法。
5、加減消元法:當(dāng)方程中兩個方程的某一未知數(shù)的系數(shù)相等或互為相反數(shù)時,把這兩個方程的兩邊相加或相減來消去這個未知數(shù),從而將二元一次方程化為一元一次方程,最后求得方程組的解,這種解方程組的方法叫做加減消元法,簡稱加減法.
6、二元一次方程組解應(yīng)用題的一般步驟可概括為“審、找、列、解、答”五步,即:
(1)審:通過審題,把實際問題抽象成數(shù)學(xué)問題,分析已知數(shù)和未知數(shù),并用字母表示其中的兩個未知數(shù);
(2)找:找出能夠表示題意兩個相等關(guān)系;
(3)列:根據(jù)這兩個相等關(guān)系列出必需的代數(shù)式,從而列出方程組;
(4)解:解這個方程組,求出兩個未知數(shù)的值;
(5)答:在對求出的方程的解做出是否合理判斷的基礎(chǔ)上,寫出答案.
初一數(shù)學(xué)方法技巧
1.請概括的說一下學(xué)習(xí)的方法
曰:“像做其他事一樣,學(xué)習(xí)數(shù)學(xué)要研究方法。我為你們推薦的方法是:超前學(xué)習(xí),展開聯(lián)想,多做總結(jié),找出合情合理。
2.請談?wù)劤皩W(xué)習(xí)的好處
曰:“首先,超前學(xué)習(xí)能挖掘出自身的潛力,培養(yǎng)自學(xué)能力。經(jīng)過超前學(xué)習(xí),會發(fā)現(xiàn)自己能獨立解決許多問題,對提高自信心,培養(yǎng)學(xué)習(xí)興趣很有幫助?!?/p>
其次,夠消除對新知識的“隱患”。超前學(xué)習(xí)能夠發(fā)現(xiàn)在現(xiàn)有的基礎(chǔ)上,自己對新知識認(rèn)識的不妥之處。相反地,若直接聽別人說。似乎自己也能一開始就達(dá)到這種理解水平,實踐證明,并非這樣。
再次,超前學(xué)習(xí)中的有些內(nèi)容,當(dāng)時不能透徹理解,但經(jīng)過深思之后,即使擱置一邊,大腦也會潛意識“加工”。當(dāng)教師進(jìn)度進(jìn)行到這塊內(nèi)容時,我們做第二次理解,會深刻的多。
最后,超前學(xué)習(xí)能提高聽課質(zhì)量。超前學(xué)習(xí)以后,我們發(fā)現(xiàn)新知識中的多數(shù)自己完全可以理解。只有少數(shù)地方需借助于別人。這樣,在課堂上,我們即能將可以集中注意力的時間放“這少數(shù)地方”的理解上,即“好鋼用在刀刃上”。事實上,一節(jié)課,能集中注意力的時間并不太多。
3.請談?wù)劼?lián)想與總結(jié)
曰:聯(lián)想與總結(jié)貫穿與學(xué)習(xí)過程中的始終。對每一知識的認(rèn)識,必定要有認(rèn)識基礎(chǔ)。尋找認(rèn)識基礎(chǔ)的過程即是聯(lián)想,而認(rèn)識基礎(chǔ)的是對以前知識的總結(jié)。以前總結(jié)的越簡潔、清晰、合理,越容易聯(lián)想。這樣就可以把新知識熔進(jìn)原來的知識結(jié)構(gòu)中為以后的某次聯(lián)想奠定基礎(chǔ)。聯(lián)想與總結(jié)在解題中特別有效。也許你以前并沒有這樣的認(rèn)識,但解題能力卻很強(qiáng),這說明你很聰明,你在不自覺中使用這種做法。如果你能很明確的認(rèn)識這一點,你的能力會更強(qiáng)。
4.那么我們怎樣預(yù)習(xí)呢?
曰:“先說說學(xué)習(xí)的目標(biāo):(1)知道知識產(chǎn)生的背景,弄清知識形成的過程。
(2)或早或晚的知道知識的地位和作用:(3)總結(jié)出認(rèn)識問題的規(guī)律(或說出認(rèn)識問題使用了以前的什么規(guī)律)。
再說具體的做法:(1)對概念的理解。數(shù)學(xué)具有高度的抽象性。通常要借助具體的東西加以理解。有時借助字面的含義:有時借助其他學(xué)科知識。有時借助圖形……理解概念的境界是意會。一定要在理解概念上下一番苦功夫后再做題。
(2)對公式定理的預(yù)習(xí),公式定理是使用最多的“規(guī)律”的總結(jié)。如:完全平方公式,勾股定理等。往往公式的推導(dǎo)定理的證明蘊(yùn)含著豐富的數(shù)學(xué)方法及相當(dāng)有用的解題規(guī)律。如三角形內(nèi)角平分線定理的證明。我們應(yīng)當(dāng)先自己推導(dǎo)公式或證明定理,若做不成再參考別人的做法。無論是自己完成的,還是看別人的,都要說出這樣做是怎樣想出來的。
初一數(shù)學(xué)下冊知識梳理相關(guān)文章:
★ 初一數(shù)學(xué)下冊知識點歸納總結(jié)
★ 初一數(shù)學(xué)下冊基本知識點總結(jié)
★ 人教版初一數(shù)學(xué)下冊知識點復(fù)習(xí)總結(jié)備戰(zhàn)中考