八年級重要數(shù)學(xué)知識點
課堂臨時報佛腳,不如課前預(yù)習(xí)好。其實任何學(xué)科都是一樣的,學(xué)習(xí)任何一門學(xué)科,勤奮是最好的學(xué)習(xí)方法,沒有之一。下面是小編給大家整理的一些八年級數(shù)學(xué)的知識點,希望對大家有所幫助。
初二上學(xué)期數(shù)學(xué)知識點歸納
分式方程
一、理解定義
1、分式方程:含分式,并且分母中含未知數(shù)的方程——分式方程。
2、解分式方程的思路是:
(1)在方程的兩邊都乘以最簡公分母,約去分母,化成整式方程。
(2)解這個整式方程。
(3)把整式方程的根帶入最簡公分母,看結(jié)果是不是為零,使最簡公分母為零的根是原方程的增根,必須舍去。
(4)寫出原方程的根。
“一化二解三檢驗四總結(jié)”
3、增根:分式方程的增根必須滿足兩個條件:
(1)增根是最簡公分母為0;(2)增根是分式方程化成的整式方程的.根。
4、分式方程的解法:
(1)能化簡的先化簡(2)方程兩邊同乘以最簡公分母,化為整式方程;
(3)解整式方程;(4)驗根;
注:解分式方程時,方程兩邊同乘以最簡公分母時,最簡公分母有可能為0,這樣就產(chǎn)生了增根,因此分式方程一定要驗根。
分式方程檢驗方法:將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。
5、分式方程解實際問題
步驟:審題—設(shè)未知數(shù)—列方程—解方程—檢驗—寫出答案,檢驗時要注意從方程本身和實際問題兩個方面進(jìn)行檢驗。
二、軸對稱圖形:
一個圖形沿一條直線對折,直線兩旁的部分能夠完全重合。這條直線叫做對稱軸。互相重合的點叫做對應(yīng)點。
1、軸對稱:
兩個圖形沿一條直線對折,其中一個圖形能夠與另一個圖形完全重合。這條直線叫做對稱軸?;ハ嘀睾系狞c叫做對應(yīng)點。
2、軸對稱圖形與軸對稱的區(qū)別與聯(lián)系:
(1)區(qū)別。軸對稱圖形討論的是“一個圖形與一條直線的對稱關(guān)系”;軸對稱討論的是“兩個圖形與一條直線的對稱關(guān)系”。
(2)聯(lián)系。把軸對稱圖形中“對稱軸兩旁的部分看作兩個圖形”便是軸對稱;把軸對稱的“兩個圖形看作一個整體”便是軸對稱圖形。
3、軸對稱的性質(zhì):
(1)成軸對稱的兩個圖形全等。
(2)對稱軸與連結(jié)“對應(yīng)點的線段”垂直。
(3)對應(yīng)點到對稱軸的距離相等。
(4)對應(yīng)點的連線互相平行。
八年級上冊數(shù)學(xué)知識點滬科版
一、在平面內(nèi),確定物體的位置一般需要兩個數(shù)據(jù)。
二、平面直角坐標(biāo)系及有關(guān)概念
1、平面直角坐標(biāo)系
在平面內(nèi),兩條互相垂直且有公共原點的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點O稱為直角坐標(biāo)系的原點;建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
2、為了便于描述坐標(biāo)平面內(nèi)點的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(坐標(biāo)軸上的點),不屬于任何一個象限。
3、點的坐標(biāo)的概念
對于平面內(nèi)任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應(yīng)的數(shù)a,b分別叫做點P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(a,b)叫做點P的坐標(biāo)。
點的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點的坐標(biāo)是有序?qū)崝?shù)對,當(dāng)時,(a,b)和(b,a)是兩個不同點的坐標(biāo)。
平面內(nèi)點的與有序?qū)崝?shù)對是一一對應(yīng)的。
4、不同位置的點的坐標(biāo)的特征
(1)、各象限內(nèi)點的坐標(biāo)的特征
點P(x,y)在第一象限:x;0,y;0
點P(x,y)在第二象限:x;0,y;0
點P(x,y)在第三象限:x;0,y;0
點P(x,y)在第四象限:x;0,y;0
(2)、坐標(biāo)軸上的點的特征
點P(x,y)在x軸上,y=0,x為任意實數(shù)
點P(x,y)在y軸上,x=0,y為任意實數(shù)
點P(x,y)既在x軸上,又在y軸上,x,y同時為零,即點P坐標(biāo)為(0,0)即原點
(3)、兩條坐標(biāo)軸夾角平分線上點的坐標(biāo)的特征
點P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等
點P(x,y)在第二、四象限夾角平分線上,x與y互為相反數(shù)
(4)、和坐標(biāo)軸平行的直線上點的坐標(biāo)的特征
位于平行于x軸的直線上的各點的縱坐標(biāo)相同。
位于平行于y軸的直線上的各點的橫坐標(biāo)相同。
初二數(shù)學(xué)復(fù)習(xí)方法
按部就班
數(shù)學(xué)是環(huán)環(huán)相扣的一門學(xué)科,哪一個環(huán)節(jié)脫節(jié)都會影響整個學(xué)習(xí)的進(jìn)程。所以,平時學(xué)習(xí)不應(yīng)貪快,要一章一章過關(guān),不要輕易留下自己不明白或者理解不深刻的問題。
強調(diào)理解
概念、定理、公式要在理解的基礎(chǔ)上記憶。每新學(xué)一個定理,嘗試先不看答案,做一次例題,看是否能正確運用新定理;若不行,則對照答案,加深對定理的理解。
基本訓(xùn)練
學(xué)習(xí)數(shù)學(xué)是不能缺少訓(xùn)練的,平時多做一些難度適中的練習(xí),當(dāng)然莫要陷入死鉆難題的誤區(qū),要熟悉高考的題型,訓(xùn)練要做到有的放矢。
重視錯誤
訂一個錯題本,專門搜集自己的錯題,這些往往就是自己的薄弱之處。復(fù)習(xí)時,這個錯題本也就成了寶貴的復(fù)習(xí)資料。
數(shù)學(xué)的學(xué)習(xí)有一個循序漸進(jìn)的過程,妄想一步登天是不現(xiàn)實的。熟記書本內(nèi)容后將書后習(xí)題認(rèn)真寫好,有些同學(xué)可能認(rèn)為書后習(xí)題太簡單不值得做,這種想法是極不可取的,書后習(xí)題的作用不僅幫助你將書本內(nèi)容記牢,還輔助你將書寫格式規(guī)范化,從而使自己的解題結(jié)構(gòu)緊密而又嚴(yán)整,公式定理能夠運用的恰如其分,以減少考試中無謂的失分。
平時的數(shù)學(xué)學(xué)習(xí):
○1課前認(rèn)真預(yù)習(xí).預(yù)習(xí)的目的是為了能更好得聽老師講課,通過預(yù)習(xí),掌握度要達(dá)到百分之八十.帶著預(yù)習(xí)中不明白的問題去聽老師講課,來解答這類的問題.預(yù)習(xí)還可以使聽課的整體效率提高.具體的預(yù)習(xí)方法:將書上的題目做完,畫出知識點,整個過程大約持續(xù)15-20分鐘.在時間允許的情況下,還可以將練習(xí)冊做完.
○2讓數(shù)學(xué)課學(xué)與練結(jié)合.在數(shù)學(xué)課上,光聽是沒用的.當(dāng)老師讓同學(xué)去黑板上演算時,自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細(xì)節(jié)問題,否則“千里之堤,毀于蟻穴”.
○3課后及時復(fù)習(xí).寫完作業(yè)后對當(dāng)天老師講的內(nèi)容進(jìn)行梳理,可以適當(dāng)?shù)刈?5分鐘左右的課外題.可以根據(jù)自己的需要選擇適合自己的課外書.其課外題內(nèi)容大概就是今天上的課.
○4單元測驗是為了檢測近期的學(xué)習(xí)情況.其實分?jǐn)?shù)代表的是你的過去,關(guān)鍵的是對于每次考試的總結(jié)和吸取教訓(xùn),是為了讓你在期中、期末考得更好.老師經(jīng)常會在沒通知的情況下進(jìn)行考試,所以要及時做到“課后復(fù)習(xí)”.
八年級重要數(shù)學(xué)知識點相關(guān)文章: