2017年中考數(shù)學備考得分技巧總結
相信大家都在為的中考備考,在中考數(shù)學備考復習的過程中一定要掌握好正確的得分技巧。下面由學習啦小編為大家提供關于中考數(shù)學備考得分技巧總結,希望對大家有幫助!
中考數(shù)學備考建議
一、堅持一個中心,兩個基本點
(一)一個中心
堅持以查漏補缺為中心的解題能力訓練(漏和缺指的是前段復習時出現(xiàn)的主要薄弱點和核心主干的知識點以及數(shù)學思想訓練點)。通過回歸教材,適當拔高,把的知識專題和方法專題復習緊密結合,以達重新有效的知識整合,即依據(jù)缺漏選擇有代表性、針對性的專題,每專題3題左右,重點在于揭示思維過程,不加大練習量,更不進題海。這是“依綱扣本,類比改造、延伸拓展”的中考命題設計特點決定的。需把握命題六要素,方能不偏方向。
?、俸诵膬热荩和怀鲋鞲?,強化核心知識之間的交叉、滲透和綜合。
?、谒枷敕椒ǎ旱丶迹癸@運用知識解決問題的數(shù)學思想方法。
?、勖}原則:立意能力,堅持考查基本數(shù)學素養(yǎng)和可持續(xù)性發(fā)展。
?、芸疾鞂颍好嫦蛉w,注重多角度多層次考查各類學生的水平。
?、蓐P注特色:注重應用,促進學生發(fā)展數(shù)學應用意識和創(chuàng)新意識。
?、薨盐针y度:難度一般要求在0.6以上,大約在0.6-0.63區(qū)間內。
(二)兩個基本點
雖然學生能力形成源自于長期的實踐積累,但該階段更應明辨兩個基本點。
一是抓緊??碱},決勝中等題。針對學生弱點和核心內容開展小專題方式的專項復習和循環(huán)訓練。諸如數(shù)式運算、函數(shù)、方程、六大應用(方程、不等式、函數(shù)、相似、解直角三角形、概率統(tǒng)計)、幾何的有關計算和證明等核心知識要常抓不懈,可回歸課本,重溫典題以加深認識,并把主要精力放在中等題上,抓住這125分即可達優(yōu)秀(表格是大概比例),關注那些將思想方法和知識點以各種不同層次融入的題目,以及對數(shù)學思想的直覺運用來區(qū)分能力的題目,做到勿因簡單而放棄多角度思考,體會解題思路的深刻理解和技巧的升華(題1簡單但方法多樣,題2也不難,但滿分不易)。
2重質不重量,精講加反思
題不在多,在于典型性和針對性。要有花兩三節(jié)課時間講解一道題的膽識,深入挖掘題目內涵,讓學生融會貫通,,以拓展知識深度,這往往比一節(jié)課做很多題更有效。講題時,慢審題以引導理解,講清解題切入點和整體思維框架,以讓學生學會看題后如何思考的方法,即思路框架先行,不完整解答。同時強調三點反思:一是題型特點,把題目回歸到學生最熟悉的原“圖式”,即去除一些背景,回到之前學習性質時題型,使學生不覺得畏懼,例如題目特殊在哪里?知識如何熟練提取?二是解題方法,歸因分析,告知問題解決的數(shù)學思想和方法,幫助學生解決“怎么辦”。例如解題思路如何發(fā)現(xiàn)?解題關鍵在哪里?三是解題步驟,學生建立問題解決程序,明晰對解題過程起支配作用的關鍵步驟及其不能缺少的理由,包括易錯點等。例如為什么沒有解答出?存在哪些錯誤和為什么會錯?
二、三大紀律八項注意
每天關注和反思教學的三大紀律執(zhí)行情況。
一是合理性,即關注時間安排和內容選擇的合理性。首先是每天15分鐘左右的選擇填空題型訓練??刂齐y度,以中低檔為主,限時訓練速度和準確性,整理錯點并循環(huán)鞏固;其次是每天半小時中等題訓練??蛇x擇課內或課外合理進行。特別盯住課本、中考指導書和模擬題的題目改編、自編或重新編排整理專題訓練的合理性,例如實際應用型問題(方程、函數(shù)、解直角三角形、統(tǒng)計概率);簡單計算題(數(shù)式運算、方程不等式、幾何線段或角度計算);簡單幾何證明題(四邊形、圓);代數(shù)綜合(方程不等式與二次函數(shù)、數(shù)形結合);幾何綜合(動態(tài)幾何、分類思想);復合題型等。平行班不進行較難的綜合型試題專項復習,而是以退為進,分步突破。例如掌握以二次函數(shù)為基架、一元二次方程為基架、三角形四邊形為基架的綜合題解題規(guī)律。此外,關注“二八法則”,數(shù)學學習上20%的題目對于考試成績起到了80%的貢獻,優(yōu)先抓住這20%的知識進行適當專題串聯(lián)。例如以下幾個專題:
方程不等式與函數(shù)專題:有關解法(直接考察求解或如待定系數(shù)法的間接考察),方程不等式與函數(shù)的綜合應用,三種函數(shù)表達方法之間的轉換,一次函數(shù)、方程組與空間圖形的聯(lián)系,反比例函數(shù)與分式方程,二次函數(shù)與幾何中的最值等。
三角形、四邊形、圓的幾何專題:三角形的全等與相似,四邊形有關的簡單證明,尺規(guī)作圖操作與簡單推理的組合,圓中的有關計算等。
運用勾股定理、銳角三角函數(shù)、相似、圖形面積等把幾何問題轉化為代數(shù)問題求解的專題。
二是循環(huán)性。學生成績往往會因為某些薄弱環(huán)節(jié)而大受影響。運用逐步深入糾錯法,循環(huán)鞏固某個薄弱環(huán)節(jié),比做對一百道題更重要。以基礎復習階段的錯題集為主,循環(huán)練習糾錯以掃清盲點。循環(huán)也體現(xiàn)在學法指導上:一是尋找薄弱,學會看書。選擇性地看中考指導書,清晰定位并鏈接式翻書以彌補薄弱。二是規(guī)范做題,重視細節(jié)。過好審題關、計算關、書寫關、反思關這四個細節(jié),避免“難而不會,會而不對,對而不全”。
三是分層性。無論在任何階段,分層都是必須的,即課堂面向中等生,幫扶學困生,兼顧尖子生。內容設計重視加大核心知識運用的頻率和局部技能分解訓練的份量,實施注意對個別問題在批改中個別輔導,抓大放小,只對多人做錯的問題集中講解,講在關鍵處。面對學困生,低起點、多歸納、快反饋、常跟蹤、多回頭;面對中等生,要促中轉優(yōu),目標管理,注重細節(jié),方法引導;面對優(yōu)等生,優(yōu)生保先,能力至上,全面發(fā)展,注重心理素質的培養(yǎng)。每天一道壓軸題給優(yōu)生加餐,關注用動態(tài)的觀點、用函數(shù)的觀點的問題。
在強化模擬訓練和講評階段,關注八大注意。
一是整合模擬,拉練設計。模擬題設計有梯度,切近中考,不照搬各地模擬題,對于大部分學生要求獨立完成100或120分以下的題目,鞏固基礎,尖子生則要求完成120分以上的題目,復習難題,自覺請教,主攻薄弱,目標定在135分以上。通過完成模擬題,總結拿高分的經(jīng)驗。
二是部分批閱,評分要狠。讓學生知道既然會就不要失分,給特殊題加思路批語形式講解,不占用課堂時間。
三是注重數(shù)據(jù),提升臨界。詳細統(tǒng)計臨界生的失分情況,三分之一以上的臨界生出錯較集中的題,是課堂講評內容的主要依據(jù)。
四是剖析精講,細評跟蹤。選準要講的題,立足一個“透”字,即要講透、要展開、要跟蹤練習。
五是查漏補缺,循環(huán)強化。歸納學生遺漏和常錯的知識點,為查漏補缺和循環(huán)訓練積累素材。
六是課堂糾錯,時間保證。課堂進行錯題相關知識的再記憶再鞏固,并趁機解決個別學生個別問題。
七是適當“解放”,調節(jié)心理。精神上增強信心,知識上清晰運用,考場上掌握節(jié)奏,做到有適度緊張的精神狀態(tài),盡量做到“小題大做”一分不丟,“大題小做”詳略得當,書寫規(guī)范穩(wěn)操勝券。
八是“每日一粒,飯后服用”,按照“精選題目、選擇批改、分析講評”的處方實施。按層次分組,每組精選一定數(shù)量的不同的??碱}(原創(chuàng)簡答,設問不多,抓重點),并根據(jù)階段情況換題(不同療程藥方不同),打印并裁剪成一捆紙條,每人每天隨機抽取,不重復,課后獨立完成或指導下完成。教師抽改,學生輔助批閱并相互間反饋,然后交作答紙給老師分析問題,準備專題講評課。
三、幾個小技巧
不忘記:中考決勝中等題。因為難題猜不著,中等題會創(chuàng)新。
不放松:靠綱列點逐清查,精編試卷近真題。
教師針對考綱每一個知識點,從歷年本省地區(qū)中考題中選題覆蓋,給學生逐一過關(大的80多個,小的150多個,可選擇最為核心的)。精編一份與中考難度接近中考題,可課本例習題改編或自編,也可以學生做過的試題整合。
不丟棄:精編每天容易題,強化訓練學困生。
三步答題技:中等生先做1~9,再做11~15,回做10與16,兩題之中碰到稍難的先跳過,接著做17-22,再做10或16與23。學困生先做1~5,再做11~13,回做6~9,14~15。其次先做17-18,再做19-21。最后看10,16與22-23,能做多少是多少!
中考數(shù)學考場得分技巧
方法一:檢查基本概念
一棵大樹的精華就在于它的根基,大樹的根部為整個樹干和枝葉提供了充足的養(yǎng)分和補給,就像基本概念、法則、公式是同學們檢查時最容易忽視的一樣,因此大家一定要重視基本概念,為什么數(shù)學基本概念在大家學習數(shù)學的過程中占了那么重要的位置呢?因為很多時候同學們在解題時極易發(fā)生小錯誤而自己卻檢查數(shù)次也發(fā)現(xiàn)不了,所以,要想數(shù)學提分,那么做完試卷第一步,在檢查基本題時,我們要仔細讀題,回到概念的定義中去,對癥下藥。
方法二:對稱檢驗
對稱的條件勢必導致結論的對稱,利用這種對稱原理可以對答案進行快速檢驗。學習數(shù)學要多找方法,不僅要找到屬于自己的學習方法,并且還要善于將復雜的事情簡單化,從而達到高效學習的目的,這樣才能快速進行數(shù)學提分。
方法三:不變量檢驗
某些數(shù)學問題在變化、變形過程中,其中有的量保持不變,如圖形的平移、旋轉、翻折時,圖形的形狀、大小不變,基本量也不變。利用這種變化過程中的不變量,可以直接驗證某些答案的正確性。
方法四:特殊情形檢驗
從普遍情況來看,想要在短期內實現(xiàn)數(shù)學提分不是一件容易的事情,在學習過程其中會遇到一些比較特殊的題型,其實,問題的特殊情況往往比一般情況更易解決,因此通過特殊值、特例來檢驗答案是非??旖莸姆椒ā?/p>
方法五:答案逆推法
相信這種方法很多學生都會,在求出題目的答案后,可將答案重新代回題目中,檢驗題目的條件是否還成立。但是這種方法一定要注意,要想想有沒有可能存在多解的情形。
總而言之,要想提高檢查的次數(shù)與效率,又想避免枯燥的重復,就需要一題多解去檢驗。
一道題,使用原來的方法去做,固然也能發(fā)現(xiàn)錯誤,但是人都是有慣性思維的,很容易就忽視了一些小的錯誤。
如果在檢查時,我們都盡量去想一些新的方法,那樣,一來可以檢查答案的對錯,二來可以減少機械性重復產生的枯燥感,三來思考新的解法也是鍛煉思維的一種手段,四來能將試卷中的題的作用發(fā)揮到最大,可以說是一舉多得的好措施。
此外,直接檢查作為最基礎的方法,要重視技巧直接檢驗法就是圍繞原來的解題方法,針對求解的過程及相關結論進行核對、查校、驗算。為配合檢查,首先應正確使用草稿紙。建議大家將草稿紙疊出格痕,按順序演算,并標上題號,方便檢查對照。其次,一定要細心細心再細心,每一個細節(jié)都需要仔細推敲,而不能“想當然”,記住“最安全的地方有時候也是最危險的地方”。
中考數(shù)學提升做題速度的方法
01熟悉習題中所涉及的內容,包括定義、公式、定理和規(guī)則。
解題、做練習只是學習過程中的一個環(huán)節(jié),而不是學習的全部,你不能為解題而解題。解題是為閱讀服務的,是檢查你是否讀懂了教科書,是否深刻理解了其中的概念、定理、公式和規(guī)則,能否利用這些概念、定理、公式和規(guī)則解決實際問題。解題時,我們的概念越清晰,對公式、定理和規(guī)則越熟悉,解題速度就越快。
因此,我們在解題之前,應通過閱讀教科書和做簡單的練習,先熟悉、記憶和辨別這些基本內容,正確理解其涵義的本質,接著馬上就做后面所配的練習,一刻也不要停留。
02熟悉習題中所涉及到的以前學過的知識,以及與其他學科相關的知識。
有時候,我們遇到一道不會做的習題,不是我們沒有學會現(xiàn)在所要學會的內容,而是要用到過去已經(jīng)學過的一個公式,而我們卻記得不很清楚了;或是需用到一個特殊的定理,而我們卻從未學過,這樣就使解題速度大為降低。
這時,我們應先補充一些必須補充的相關知識,弄清楚與題目相關的概念、公式或定理,然后再去解題,否則就是浪費時間,當然,解題速度就更無從談起了。
03熟悉基本的解題步驟和解題方法。
解題的過程,是一個思維的過程。對一些基本的、常見的問題,前人已經(jīng)總結出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習題的答案。否則,走了彎路就多花了時間。
04認真做好歸納總結。
在解過一定數(shù)量的習題之后,對所涉及到的知識、解題方法進行歸納總結,以便使解題思路更為清晰,就能達到舉一反三的效果,對于類似的習題一目了然,可以節(jié)約大量的解題時間。
05先易后難,逐步增加習題的難度。
人們認識事物的過程都是從簡單到復雜。簡單的問題解多了,從而使概念清晰了,對公式、定理以及解題步驟熟悉了,解題時就會形成跳躍性思維,解題的速度就會大大提高。養(yǎng)成了習慣,遇到一般的難題,同樣可以保持較高的解題速度。有些學生不太重視這些基本的、簡單的習題,認為沒有必要花費時間去解這些簡單的習題,結果是概念不清,公式、定理及解題步驟不熟,遇到稍難一些的題,就束手無策,解題速度就更不用說了。
其實,解簡單容易的習題,并不一定比解一道復雜難題的勞動強度和效率低。比如,與一個人扛一大袋大米上五層樓相比,一個人拎一個小提包也上到五層樓當然要輕松得多。但是,如果扛米的人只上一次,而拎包的人要來回上下50次、甚至100次,那么,拎包人比扛米人的勞動強度大。所以在相同時間內,解50道、100道簡單題,可能要比解一道難題的勞動強度大。
由此可見,去解一道難以解出的難題,不如去解30道稍微簡單一些的習題,其收獲也許會更大。因此,我們在學習時,應根據(jù)自己的能力,先去解那些看似簡單,卻很重要的習題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會達到事半功倍的效果。
06認真、仔細地審題。
對于一道具體的習題,解題時最重要的環(huán)節(jié)是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應特別注意每一句話的內在涵義,并從中找出隱含條件。讀題一旦結束,哪些是已知條件?求解的結論是什么?還缺少哪些條件,可否從已知條件中推出?在你的腦海里,這些信息就應該已經(jīng)結成了一張網(wǎng),并有了初步的思路和解題方案,然后就是根據(jù)自己的思路,演算一遍,加以驗證。
有些學生沒有養(yǎng)成讀題、思考的習慣,心里著急,匆匆一看,就開始解題,結果常常是漏掉了一些信息,花了很長時間解不出來,還找不到原因,想快卻慢了。很多時候學生問問題的時候,老師和他一起讀題,讀到一半時,他說:“老師,我會了。”所以,在實際解題時,應特別注意,審題要認真、仔細。
07學會畫圖。
畫圖是一個翻譯的過程。讀題時,若能根據(jù)題義,把對數(shù)學(或其他學科)語言的理解,畫成分析圖,就使題目變得形象、直觀。這樣就把解題時的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關系就變得一目了然。尤其是對于幾何題,包括解析幾何題,若不會畫圖,有時簡直是無從下手。
因此,牢記各種題型的基本作圖方法,牢記各種函數(shù)的圖像和意義及演變過程和條件,對于提高解題速度非常重要。畫圖時應注意盡量畫得準確。畫圖準確,有時能使你一眼就看出答案,再進一步去演算證實就可以了;反之,作圖不準確,有時會將你引入歧途。
猜你喜歡: