學(xué)習(xí)啦>學(xué)習(xí)方法>通用學(xué)習(xí)方法>學(xué)習(xí)經(jīng)驗>

六年級數(shù)學(xué)觀察物體知識點

時間: 維維0 分享

小學(xué)數(shù)學(xué)是通過教材,教小朋友們關(guān)于數(shù)的認識,四則運算,圖形和長度的計算公式,單位轉(zhuǎn)換一系列的知識,為初中和日常生活的計算打下良好的數(shù)學(xué)基礎(chǔ)。下面小編給大家分享一些六年級數(shù)學(xué)觀察物體知識,希望能夠幫助大家,歡迎閱讀!

六年級觀察物體知識

一、搭積木比賽

1.能正確辨認從不同方向(正面、側(cè)面、上面)觀察到的立體圖形的形狀,并畫出平面圖。

2.能根據(jù)把從正面、側(cè)面、上面觀察的平面圖形還原成立體圖形,進一步體會從三個方向觀察就可以確定立體圖形的形狀;能根據(jù)給定的兩個方向觀察到的平面圖形的形狀,確定搭成這個立體圖形所需要的立方體的數(shù)量。

二、觀察范圍

1、經(jīng)歷分別將眼睛、視線與觀察的范圍抽象為點、線、區(qū)域的過程,感受觀察范圍隨觀察點、觀察角度的變化而改變。

2、能正確認識視線都是直線這個現(xiàn)象。能利用所學(xué)的知識解釋生活中的一些現(xiàn)象。

路燈下物體的影長:同樣高的桿子離路燈越近,它的影子就越 短。

三、天安門廣場

1、從不同的位置,觀察物體的形狀和相對位置。

2、同一物體,從不同位置觀察物體,看到的的形狀也有所不同。觀察時先確定景物中主要物體的相對位置關(guān)系,再進行合理的想象和推理。作出正確的判斷。

小學(xué)數(shù)學(xué)思想方法有哪些?

1、對應(yīng)思想方法

對應(yīng)是人們對兩個集合因素之間的聯(lián)系的一種思想方法,小學(xué)數(shù)學(xué)一般是一一對應(yīng)的直觀圖表,并以此孕伏函數(shù)思想。如直線上的點(數(shù)軸)與表示具體的數(shù)是一一對應(yīng)。

2、假設(shè)思想方法

假設(shè)是先對題目中的已知條件或問題作出某種假設(shè),然后按照題中的已知條件進行推算,根據(jù)數(shù)量出現(xiàn)的矛盾,加以適當(dāng)調(diào)整,最后找到正確答案的一種思想方法。假設(shè)思想是一種有意義的想象思維,掌握之后可以使要解決的問題更形象、具體,從而豐富解題思路。

3、比較思想方法

比較思想是數(shù)學(xué)中常見的思想方法之一,也是促進學(xué)生思維發(fā)展的手段。在教學(xué)分數(shù)應(yīng)用題中,教師善于引導(dǎo)學(xué)生比較題中已知和未知數(shù)量變化前后的情況,可以幫助學(xué)生較快地找到解題途徑。

4、符號化思想方法

用符號化的語言(包括字母、數(shù)字、圖形和各種特定的符號)來描述數(shù)學(xué)內(nèi)容,這就是符號思想。如數(shù)學(xué)中各種數(shù)量關(guān)系,量的變化及量與量之間進行推導(dǎo)和演算,都是用小小的字母表示數(shù),以符號的'濃縮形式表達大量的信息。如定律、公式、等。

5、類比思想方法

類比思想是指依據(jù)兩類數(shù)學(xué)對象的相似性,有可能將已知的一類數(shù)學(xué)對象的性質(zhì)遷移到另一類數(shù)學(xué)對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數(shù)學(xué)知識容易理解,而且使公式的記憶變得順?biāo)浦鄣淖匀缓秃啙崱?/p>

6、轉(zhuǎn)化思想方法

轉(zhuǎn)化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。

7、分類思想方法

分類思想方法不是數(shù)學(xué)獨有的方法,數(shù)學(xué)的分類思想方法體現(xiàn)對數(shù)學(xué)對象的分類及其分類的標(biāo)準(zhǔn)。如自然數(shù)的分類,若按能否被2整除分奇數(shù)和偶數(shù);按約數(shù)的個數(shù)分質(zhì)數(shù)和合數(shù)。又如三角形可以按邊分,也可以按角分。不同的分類標(biāo)準(zhǔn)就會有不同的分類結(jié)果,從而產(chǎn)生新的概念。對數(shù)學(xué)對象的正確、合理分類取決于分類標(biāo)準(zhǔn)的正確、合理性,數(shù)學(xué)知識的分類有助于學(xué)生對知識的梳理和建構(gòu)。

8、集合思想方法

集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數(shù)學(xué)問題或非純數(shù)學(xué)問題的思想方法。小學(xué)采用直觀手段,利用圖形和實物滲透集合思想。在講述公約數(shù)和公倍數(shù)時采用了交集的思想方法。

9、數(shù)形結(jié)合思想方法

數(shù)和形是數(shù)學(xué)研究的兩個主要對象,數(shù)離不開形,形離不開數(shù),一方面抽象的數(shù)學(xué)概念,復(fù)雜的數(shù)量關(guān)系,借助圖形使之直觀化、形象化、簡單化。另一方面復(fù)雜的形體可以用簡單的數(shù)量關(guān)系表示。在解應(yīng)用題中常常借助線段圖的直觀幫助分析數(shù)量關(guān)系。

10、統(tǒng)計思想方法

小學(xué)數(shù)學(xué)中的統(tǒng)計圖表是一些基本的統(tǒng)計方法,求平均數(shù)應(yīng)用題是體現(xiàn)出數(shù)據(jù)處理的思想方法。

什么是小學(xué)數(shù)學(xué)思想方法

所謂的數(shù)學(xué)思想,是指人們對數(shù)學(xué)理論與內(nèi)容的本質(zhì)認識,是從某些具體數(shù)學(xué)認識過程中提煉出的一些觀點,它揭示了數(shù)學(xué)發(fā)展中普遍的規(guī)律,它直接支配著數(shù)學(xué)的實踐活動,這是對數(shù)學(xué)規(guī)律的理性認識。

所謂的數(shù)學(xué)方法,就是解決數(shù)學(xué)問題的方法,即解決數(shù)學(xué)具體問題時所采用的方式、途徑和手段,也可以說是解決數(shù)學(xué)問題的策略。

數(shù)學(xué)思想是宏觀的,它更具有普遍的指導(dǎo)意義。而數(shù)學(xué)方法是微觀的,它是解決數(shù)學(xué)問題的直接具體的手段。一般來說,前者給出了解決問題的方向,后者給出了解決問題的策略。但由于小學(xué)數(shù)學(xué)內(nèi)容比較簡單,知識最為基礎(chǔ),所以隱藏的思想和方法很難截然分開,更多的反映在聯(lián)系方面,其本質(zhì)往往是一致的。如常用的分類思想和分類方法,集合思想和交集方法,在本質(zhì)上都是相通的,所以小學(xué)數(shù)學(xué)通常把數(shù)學(xué)思想和方法看成一個整體概念,即小學(xué)數(shù)學(xué)思想方法。

六年級數(shù)學(xué)觀察物體知識點相關(guān)文章

小學(xué)各年級數(shù)學(xué)知識點總結(jié)

小升初考試必備數(shù)學(xué)一到六年級的知識點

小學(xué)數(shù)學(xué)各年級知識點重點難點整理

六年級下冊數(shù)學(xué)《圖形與幾何》教案精選范文五篇

小學(xué)四年級數(shù)學(xué)下冊《觀察物體》教案優(yōu)秀范文3篇

六年級數(shù)學(xué)教學(xué)計劃匯總5篇

六年級數(shù)學(xué)教學(xué)計劃

小學(xué)六年級數(shù)學(xué)教學(xué)計劃匯總5篇精選

六年級數(shù)學(xué)科教學(xué)計劃5篇匯總集錦

小學(xué)五年級數(shù)學(xué)下冊《觀察物體三》精選教案范文三篇

971328