六年級數(shù)學(xué)知識點歸納總結(jié)
求學(xué)的三個條件是:多觀察、多吃苦、多研究。每一門科目都有自己的學(xué)習方法,但其實都是萬變不離其中的,也是要記、要背、要講練的。下面是小編給大家整理的一些六年級數(shù)學(xué)的知識點,希望對大家有所幫助。
小學(xué)六年級數(shù)學(xué)下冊知識點
負數(shù)
1.在熟悉的生活情境中初步認識負數(shù),能正確的讀、寫正數(shù)和負數(shù),知道0既不是正數(shù)也不是負數(shù)。
2.初步學(xué)會用負數(shù)表示一些日常生活中的實際問題,體驗數(shù)學(xué)與生活的密切聯(lián)系。
3.能借助數(shù)軸初步學(xué)會比較正數(shù)、0和負數(shù)之間的大小。
4.像-16、-500、-3/8、-0.4…這樣的數(shù)叫做負數(shù)。
-3/8讀作負八分之三。
16,200,3/8,6.3…這樣的數(shù)叫做正數(shù)。正數(shù)前面可以加“+”號,也可以省去“+”號。
+6.3讀作正六點三。
0既不是正數(shù),也不是負數(shù)。
5.16℃讀作十六攝氏度,表示零上16℃;-16℃讀作負十六攝氏度,表示零下16℃
6.如果2000表示存入2000元,那么-500表示支出了500元。向東走3m記作+3,向西4m記作-4。
7.在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。
0是正數(shù)和負數(shù)的分界點,所有的負數(shù)都在0的左邊,也就是負數(shù)都比0小,而正數(shù)都比0大,負數(shù)都比正數(shù)小。
負號后面的數(shù)越大,這個數(shù)就越小。如:-8<-6。
小學(xué)六年級數(shù)學(xué)知識點:比例
1.理解比例的意義和基本性質(zhì),會解比例。
2.理解正比例和反比例的意義,能找出生活中成正比例和成反比例量的實例,能運用比例知識解決簡單的實際問題。
3.認識正比例關(guān)系的圖像,能根據(jù)給出的有正比例關(guān)系的數(shù)據(jù)在有坐標系的方格紙上畫出圖像,會根據(jù)其中一個量在圖像中找出或估計出另一個量的值。
4.了解比例尺,會求平面圖的比例尺以及根據(jù)比例尺求圖上距離或?qū)嶋H距離。
5.認識放大與縮小現(xiàn)象,能利用方格紙等形式按一定的比例將簡單圖形放大或縮小,體會圖形的相似。
6.滲透函數(shù)思想,使學(xué)生受到辯證唯物主義觀點的啟蒙教育。
7.比例的意義:表示兩個比相等的式子叫做比例。如:2:1=6:
8.組成比例的四個數(shù),叫做比例的項。兩端的兩項叫做外項,中間的兩項叫做內(nèi)項。
9.比例的性質(zhì):在比例里,兩個外項的積等于兩個兩個內(nèi)向的積。這叫做比例的基本性質(zhì)。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1.2:1.5。
10.解比例:根據(jù)比例的基本性質(zhì),如果已知比例中的任何三項,就可以求出這個數(shù)比例中的另外一個未知項。
求比例中的未知項,叫做解比例。
例如:3:x=4:8,內(nèi)項乘內(nèi)項,外項乘外項,則:4x=3×8,解得x=6。
11.正比例和反比例:
(1)成正比例的量:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關(guān)系叫做正比例關(guān)系。用字母表示y/x=k(一定)
例如:
①速度一定,路程和時間成正比例;因為:路程÷時間=速度(一定)。
②圓的周長和直徑成正比例,因為:圓的周長÷直徑=圓周率(一定)。
③圓的面積和半徑不成比例,因為:圓的面積÷半徑=圓周率和半徑的積(不一定)。
④y=5x,y和x成正比例,因為:y÷x=5(一定)。
⑤每天看的頁數(shù)一定,總頁數(shù)和天數(shù)成正比例,因為:總頁數(shù)÷天數(shù)=每天看頁數(shù)(一定)。
(2)成反比例的量:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,他們的關(guān)系叫做反比例關(guān)系。
用字母表示x×y=k(一定)
例如:①、路程一定,速度和時間成反比例,因為:速度×時間=路程(一定)。
②總價一定,單價和數(shù)量成反比例,因為:單價×數(shù)量=總價(一定)。
③長方形面積一定,它的長和寬成反比例,因為:長×寬=長方形的面積(一定)。
④40÷x=y,x和y成反比例,因為:x×y=40(一定)。
⑤煤的總量一定,每天的燒煤量和燒的天數(shù)成反比例,因為:每天燒煤量×天數(shù)=煤的總量(一定)。
12.圖上距離:實際距離=比例尺;
例如:圖上距離2cm,實際距離4km,則比例尺為2cm:4km,最后求得比例尺是1:200000。
13.實際距離=圖上距離÷比例尺;
例如:已知圖上距離2cm和比例尺,則實際距離為:2÷1/200000=400000cm=4km。
14.圖上距離=實際距離×比例尺;
例如:已知實際距離4km和比例尺1:200000,則圖上距離為:400000×1/200000=2(cm)
小學(xué)6年級畢業(yè)考試數(shù)學(xué)重難知識點
邏輯推理
條件分析—假設(shè)法:
假設(shè)可能情況中的一種成立,然后按照這個假設(shè)去判斷,如果有與題設(shè)條件矛盾的情況,說明該假設(shè)情況是不成立的,那么與他的相反情況是成立的。例如,假設(shè)a是偶數(shù)成立,在判斷過程中出現(xiàn)了矛盾,那么a一定是奇數(shù)。
條件分析—列表法:
當題設(shè)條件比較多,需要多次假設(shè)才能完成時,就需要進行列表來輔助分析。列表法就是把題設(shè)的條件全部表示在一個長方形表格中,表格的行、列分別表示不同的對象與情況,觀察表格內(nèi)的題設(shè)情況,運用邏輯規(guī)律進行判斷。
條件分析—圖表法:
當兩個對象之間只有兩種關(guān)系時,就可用連線表示兩個對象之間的關(guān)系,有連線則表示“是,有”等肯定的狀態(tài),沒有連線則表示否定的狀態(tài)。例如A和B兩人之間有認識或不認識兩種狀態(tài),有連線表示認識,沒有表示不認識。
邏輯計算:
在推理的過程中除了要進行條件分析的推理之外,還要進行相應(yīng)的計算,根據(jù)計算的結(jié)果為推理提供一個新的判斷篩選條件。
簡單歸納與推理:
根據(jù)題目提供的特征和數(shù)據(jù),分析其中存在的規(guī)律和方法,并從特殊情況推廣到一般情況,并遞推出相關(guān)的關(guān)系式,從而得到問題的解決。
人教版數(shù)學(xué)六年級知識點
一、圓的特征
1、圓是平面內(nèi)封閉曲線圍成的平面圖形。
2、圓的特征:外形美觀,易滾動。
3、圓心O:圓中心的點叫做圓心.圓心一般用字母O表示。
圓多次對折之后,折痕的相交于圓的中心即圓心。圓心確定圓的位置。
半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數(shù)條半徑,且所有的半徑都相等。半徑確定圓的大小。
直徑d:通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數(shù)條直徑,且所有的直徑都相等。直徑是圓內(nèi)最長的線段。
同圓或等圓內(nèi)直徑是半徑的2倍:d=2r或r=d÷2
4、等圓:半徑相等的圓叫做同心圓,等圓通過平移可以完全重合。同心圓:圓心重合、半徑不等的兩個圓叫做同心圓。
5、圓是軸對稱圖形:如果一個圖形沿著一條直線對折,兩側(cè)的圖形能夠完全重合,這個圖形是軸對稱圖形。折痕所在的直線叫做對稱軸。
有一條對稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角。
有二條對稱軸的圖形:長方形
有三條對稱軸的圖形:等邊三角形
有四條對稱軸的圖形:正方形
有無條對稱軸的圖形:圓,圓環(huán)
6、畫圓
(1)圓規(guī)兩腳間的距離是圓的半徑。(2)畫圓步驟:定半徑、定圓心、旋轉(zhuǎn)一周。
二、圓的周長:
圍成圓的曲線的長度叫做圓的周長,周長用字母C表示。
1、圓的周長總是直徑的三倍多一些。
2、圓周率:圓的周長與直徑的比值是一個固定值,叫做圓周率,用字母π表示。
即:圓周率π=周長÷直徑≈3.14
所以,圓的周長(c)=直徑(d)×圓周率(π)—周長公式:c=πd,c=2πr
圓周率π是一個無限不循環(huán)小數(shù),3.14是近似值。
3、周長的變化的規(guī)律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數(shù)與半徑、直徑擴大的倍數(shù)相同。
4、半圓周長=圓周長一半+直徑=πr+d
六年級數(shù)學(xué)知識點歸納總結(jié)相關(guān)文章:
★ 六年級數(shù)學(xué)期末復(fù)習知識點匯總
★ 小學(xué)六年級數(shù)學(xué)知識點總結(jié)
★ 小學(xué)六年級數(shù)學(xué)學(xué)習方法和技巧大全
★ 六年級數(shù)學(xué)的重難點知識總結(jié)