學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>初三學(xué)習(xí)方法>九年級(jí)數(shù)學(xué)>

初三數(shù)學(xué)人教版知識(shí)點(diǎn)歸納

時(shí)間: 躍瀚0 分享

沒(méi)有加倍的勤奮,就沒(méi)有才能,也沒(méi)有天才。天才其實(shí)就是可以持之以恒的人。勤能補(bǔ)拙是良訓(xùn),一分辛苦一分才,勤奮一直都是學(xué)習(xí)通向成功的最好捷徑。下面是小編給大家整理的一些初三數(shù)學(xué)知識(shí)點(diǎn),希望對(duì)大家有所幫助。

初三新學(xué)期數(shù)學(xué)知識(shí)點(diǎn)

一元一次方程:

①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是

1、這樣的方程叫一元一次方程。

②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。

解一元一次方程的步驟:

去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。

二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。

二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。

解二元一次方程組的方法:代入消元法/加減消元法。

2、不等式與不等式組

不等式:

①用符號(hào)”=“號(hào)連接的式子叫不等式。

②不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)的方向不變。

③不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。

④不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。

不等式的解集:

①能使不等式成立的未知數(shù)的值,叫做不等式的解。

②一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

③求不等式解集的過(guò)程叫做解不等式。

一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。

一元一次不等式組:

①關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。

②一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。

③求不等式組解集的過(guò)程,叫做解不等式組。

3、函數(shù)

變量:因變量,自變量。在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。

一次函數(shù):

①若兩個(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。

②當(dāng)B=0時(shí),稱Y是X的正比例函數(shù)。

一次函數(shù)的圖象:

①把一個(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。

②正比例函數(shù)Y=KX的圖象是經(jīng)過(guò)原點(diǎn)的一條直線。

③在一次函數(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。

④當(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。

初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)歸納

二元一次方程組

1、定義:含有兩個(gè)未知數(shù),并且未知項(xiàng)的次數(shù)是1的整式方程叫做二元一次方程。

2、二元一次方程組的解法

(1)代入法

由一個(gè)二次方程和一個(gè)一次方程所組成的方程組通常用代入法來(lái)解,這是基本的消元降次方法。

(2)因式分解法

在二元二次方程組中,至少有一個(gè)方程可以分解時(shí),可采用因式分解法通過(guò)消元降次來(lái)解。

(3)配方法

將一個(gè)式子,或一個(gè)式子的某一部分通過(guò)恒等變形化為完全平方式或幾個(gè)完全平方式的和。

(4)韋達(dá)定理法

通過(guò)韋達(dá)定理的逆定理,可以利用兩數(shù)的和積關(guān)系構(gòu)造一元二次方程。

(5)消常數(shù)項(xiàng)法

當(dāng)方程組的兩個(gè)方程都缺一次項(xiàng)時(shí),可用消去常數(shù)項(xiàng)的方法解。

解一元二次方程

解一元二次方程的基本思想方法是通過(guò)“降次”將它化為兩個(gè)一元一次方程。

1、直接開平方法:

用直接開平方法解形如(x-m)2=n(n≥0)的方程,其解為x=±m(xù).

直接開平方法就是平方的逆運(yùn)算.通常用根號(hào)表示其運(yùn)算結(jié)果.

2、配方法

通過(guò)配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱為配方法,配方的依據(jù)是完全平方公式。

(1)轉(zhuǎn)化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)

(2)系數(shù)化1:將二次項(xiàng)系數(shù)化為1

(3)移項(xiàng):將常數(shù)項(xiàng)移到等號(hào)右側(cè)

(4)配方:等號(hào)左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方

(5)變形:將等號(hào)左邊的代數(shù)式寫成完全平方形式

(6)開方:左右同時(shí)開平方

(7)求解:整理即可得到原方程的根

3、公式法

公式法:把一元二次方程化成一般形式,然后計(jì)算判別式△=b2-4ac的值,當(dāng)b2-4ac≥0時(shí),把各項(xiàng)系數(shù)a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

代數(shù)式

1、代數(shù)式與有理式

用運(yùn)算符號(hào)把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或字母也是代數(shù)式。

整式和分式統(tǒng)稱為有理式。

2、整式和分式

含有加、減、乘、除、乘方運(yùn)算的代數(shù)式叫做有理式。

沒(méi)有除法運(yùn)算或雖有除法運(yùn)算但除式中不含有字母的有理式叫做整式。

有除法運(yùn)算并且除式中含有字母的有理式叫做分式。

3、單項(xiàng)式與多項(xiàng)式

沒(méi)有加減運(yùn)算的整式叫做單項(xiàng)式。(數(shù)字與字母的積-包括單獨(dú)的一個(gè)數(shù)或字母)

幾個(gè)單項(xiàng)式的和,叫做多項(xiàng)式。

說(shuō)明:

①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運(yùn)算,把單項(xiàng)式、多項(xiàng)式區(qū)分開。

②進(jìn)行代數(shù)式分類時(shí),是以所給的代數(shù)式為對(duì)象,而非以變形后的代數(shù)式為對(duì)象。

4、同類項(xiàng)及其合并

條件:①字母相同;②相同字母的指數(shù)相同

合并依據(jù):乘法分配律。

初三數(shù)學(xué)學(xué)習(xí)方法

概念課

要重視教學(xué)過(guò)程,要積極體驗(yàn)知識(shí)產(chǎn)生、發(fā)展的過(guò)程,要把知識(shí)的來(lái)龍去脈搞清楚,認(rèn)識(shí)知識(shí)發(fā)生的過(guò)程,理解公式、定理、法則的推導(dǎo)過(guò)程,改變死記硬背的方法,這樣我們就能從知識(shí)形成、發(fā)展過(guò)程當(dāng)中,理解到學(xué)會(huì)它的樂(lè)趣;在解決問(wèn)題的過(guò)程中,體會(huì)到成功的喜悅。

習(xí)題課

要掌握“聽一遍不如看一遍,看一遍不如做一遍,做一遍不如講一遍,講一遍不如辯一辯”的訣竅。除了聽老師講,看老師做以外,要自己多做習(xí)題,而且要把自己的體會(huì)主動(dòng)、大膽地講給大家聽,遇到問(wèn)題要和同學(xué)、老師辯一辯,堅(jiān)持真理,改正錯(cuò)誤。在聽課時(shí)要注意老師展示的解題思維過(guò)程,要多思考、多探究、多嘗試,發(fā)現(xiàn)創(chuàng)造性的證法及解法,學(xué)會(huì)“小題大做”和“大題小做”的解題方法,即對(duì)選擇題、填空題一類的客觀題要認(rèn)真對(duì)待絕不粗心大意,就像對(duì)待大題目一樣,做到下筆如有神;對(duì)綜合題這樣的大題目不妨把“大”拆“小”,以“退”為“進(jìn)”,也就是把一個(gè)比較復(fù)雜的問(wèn)題,拆成或退為最簡(jiǎn)單、最原始的問(wèn)題,把這些小題、簡(jiǎn)單問(wèn)題想通、想透,找出規(guī)律,然后再來(lái)一個(gè)飛躍,進(jìn)一步升華,就能湊成一個(gè)大題,即退中求進(jìn)了。如果有了這種分解、綜合的能力,加上有扎實(shí)的基本功還有什么題目難得倒我們。

復(fù)習(xí)課

在數(shù)學(xué)學(xué)習(xí)過(guò)程中,要有一個(gè)清醒的復(fù)習(xí)意識(shí),逐漸養(yǎng)成良好的復(fù)習(xí)習(xí)慣,從而逐步學(xué)會(huì)學(xué)習(xí)。數(shù)學(xué)復(fù)習(xí)應(yīng)是一個(gè)反思性學(xué)習(xí)過(guò)程。要反思對(duì)所學(xué)習(xí)的知識(shí)、技能有沒(méi)有達(dá)到課程所要求的程度;要反思學(xué)習(xí)中涉及到了哪些數(shù)學(xué)思想方法,這些數(shù)學(xué)思想方法是如何運(yùn)用的,運(yùn)用過(guò)程中有什么特點(diǎn);要反思基本問(wèn)題(包括基本圖形、圖像等),典型問(wèn)題有沒(méi)有真正弄懂弄通了,平時(shí)碰到的問(wèn)題中有哪些問(wèn)題可歸結(jié)為這些基本問(wèn)題;要反思自己的錯(cuò)誤,找出產(chǎn)生錯(cuò)誤的原因,訂出改正的措施。在新學(xué)期大家準(zhǔn)備一本數(shù)學(xué)學(xué)習(xí)“病例卡”,把平時(shí)犯的錯(cuò)誤記下來(lái),找出“病因”開出“處方”,并且經(jīng)常拿出來(lái)看看、想想錯(cuò)在哪里,為什么會(huì)錯(cuò),怎么改正,通過(guò)你的努力,到中考時(shí)你的數(shù)學(xué)就沒(méi)有什么“病例”了。并且數(shù)學(xué)復(fù)習(xí)應(yīng)在數(shù)學(xué)知識(shí)的運(yùn)用過(guò)程中進(jìn)行,通過(guò)運(yùn)用,達(dá)到深化理解、發(fā)展能力的目的,因此在新的一年要在教師的指導(dǎo)下做一定數(shù)量的數(shù)學(xué)習(xí)題,做到舉一反三、熟練應(yīng)用,避免以“練”代“復(fù)”的題海戰(zhàn)術(shù)。

初三數(shù)學(xué)人教版知識(shí)點(diǎn)歸納相關(guān)文章

初三數(shù)學(xué)知識(shí)點(diǎn)歸納人教版

人教版九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)歸納

九年級(jí)人教版數(shù)學(xué)知識(shí)點(diǎn)整理

初三物理知識(shí)點(diǎn)總結(jié)歸納(完整版)

人教版九年級(jí)下冊(cè)數(shù)學(xué)復(fù)習(xí)提綱

各年級(jí)數(shù)學(xué)學(xué)習(xí)方法大全

最新初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全

九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

人教版初三數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)資料備戰(zhàn)中考

九年級(jí)數(shù)學(xué)重要知識(shí)點(diǎn)

初三數(shù)學(xué)人教版知識(shí)點(diǎn)歸納

沒(méi)有加倍的勤奮,就沒(méi)有才能,也沒(méi)有天才。天才其實(shí)就是可以持之以恒的人。勤能補(bǔ)拙是良訓(xùn),一分辛苦一分才,勤奮一直都是學(xué)習(xí)通向成功的最好捷徑。下面是小編給大家整理的一些初三數(shù)學(xué)知識(shí)點(diǎn),希望對(duì)大家有所幫助。
推薦度:
點(diǎn)擊下載文檔文檔為doc格式
1120522