學習啦>學習方法>高中學習方法>高一學習方法>高一數學>

高一數學備考知識點

時間: 躍瀚1373 分享

課堂臨時報佛腳,不如課前預習好。其實任何學科的知識都是一樣的,學習任何一門學科,勤奮都是最好的學習方法,沒有之一,書山有路勤為徑。下面是小編給大家整理的一些高一數學的知識點,希望對大家有所幫助。

高一數學必修一知識點梳理

1、柱、錐、臺、球的結構特征

(1)棱柱:

定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱、五棱柱等。

表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。

幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標準分為三棱錐、四棱錐、五棱錐等

表示:用各頂點字母,如五棱錐

幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

(3)棱臺:

定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

分類:以底面多邊形的邊數作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等

表示:用各頂點字母,如五棱臺

幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

(6)圓臺:

定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)

注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:

①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

高一上冊數學必修一知識點梳理

函數的性質

函數的單調性(局部性質)

(1)增函數

設函數y=f(x)的定義域為I,如果對于定義域I內的某個區(qū)間D內的任意兩個自變量x1,x2,當x1

如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當x1f(x2),那么就說f(x)在這個區(qū)間上是減函數.區(qū)間D稱為y=f(x)的單調減區(qū)間.

注意:函數的單調性是函數的局部性質;

(2)圖象的特點

如果函數y=f(x)在某個區(qū)間是增函數或減函數,那么說函數y=f(x)在這一區(qū)間上具有(嚴格的)單調性,在單調區(qū)間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.

(3).函數單調區(qū)間與單調性的判定方法

(A)定義法:

(1)任取x1,x2∈D,且x1

(2)作差f(x1)-f(x2);或者做商

(3)變形(通常是因式分解和配方);

(4)定號(即判斷差f(x1)-f(x2)的正負);

(5)下結論(指出函數f(x)在給定的區(qū)間D上的單調性).

(B)圖象法(從圖象上看升降)

(C)復合函數的單調性

復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規(guī)律:“同增異減”

注意:函數的單調區(qū)間只能是其定義域的子區(qū)間,不能把單調性相同的區(qū)間和在一起寫成其并集.

函數的奇偶性(整體性質)

(1)偶函數:一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.

(2)奇函數:一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.

(3)具有奇偶性的函數的圖象的特征:偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.

9.利用定義判斷函數奇偶性的步驟:

1首先確定函數的定義域,并判斷其是否關于原點對稱;

2確定f(-x)與f(x)的關系;

3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.

注意:函數定義域關于原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關于原點對稱,若不對稱則函數是非奇非偶函數.若對稱,

(1)再根據定義判定;

(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;

(3)利用定理,或借助函數的圖象判定.

函數的解析表達式

(1)函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.

(2)求函數的解析式的主要方法有:1.湊配法2.待定系數法3.換元法4.消參法

函數(小)值

1利用二次函數的性質(配方法)求函數的(小)值

2利用圖象求函數的(小)值

3利用函數單調性的判斷函數的(小)值:

如果函數y=f(x)在區(qū)間[a,b]上單調遞增,在區(qū)間[b,c]上單調遞減則函數y=f(x)在x=b處有值f(b);

如果函數y=f(x)在區(qū)間[a,b]上單調遞減,在區(qū)間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);

高一數學必修五知識點總結

1.函數思想:把某變化過程中的一些相互制約的變量用函數關系表達出來,并研究這些量間的相互制約關系,最后解決問題,這就是函數思想;

2.應用函數思想解題,確立變量之間的函數關系是一關鍵步驟,大體可分為下面兩個步驟:

(1)根據題意建立變量之間的函數關系式,把問題轉化為相應的函數問題;

(2)根據需要構造函數,利用函數的相關知識解決問題;

(3)方程思想:在某變化過程中,往往需要根據一些要求,確定某些變量的值,這時常常列出這些變量的方程或(方程組),通過解方程(或方程組)求出它們,這就是方程思想;

3.函數與方程是兩個有著密切聯(lián)系的數學概念,它們之間相互滲透,很多方程的問題需要用函數的知識和方法解決,很多函數的問題也需要用方程的方法的支援,函數與方程之間的辯證關系,形成了函數方程思想。

高一數學備考知識點相關文章

高一數學知識點全面總結

高一數學知識點復習歸納

高一數學知識點匯總大全

高一數學重點知識點

高一數學知識點新總結

高一數學知識點總結

高一數學有用必考知識點歸納

高一數學考試必考的知識點概括

高一數學必考知識點分析

高一數學備考知識點

課堂臨時報佛腳,不如課前預習好。其實任何學科的知識都是一樣的,學習任何一門學科,勤奮都是最好的學習方法,沒有之一,書山有路勤為徑。下面是小編給大家整理的一些高一數學的知識點,希望對大家有所幫助。高一數
推薦度:
點擊下載文檔文檔為doc格式

精選文章

  • 高一數學高考學習方法技巧
    高一數學高考學習方法技巧

    各個科目都有自己的學習方法,但其實都是萬變不離其中的,基本離不開背、記,練,數學作為最燒腦的科目之一,也是一樣的。下面是小編給大家整理的

  • 高一數學學習方法參考
    高一數學學習方法參考

    學習從來無捷徑。每一門科目都有自己的學習方法,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要練的。下面是小編給大家

  • 高一數學復習方法技巧
    高一數學復習方法技巧

    打盹會做夢,學習會圓夢。要想提高自身的學習成績,則需要實際行動起來,不能三天打魚,兩天曬網,學習如同逆水行舟,不進則退。下面是小編給大家

  • 高一數學學習方法技巧
    高一數學學習方法技巧

    數學是考試的重點考察科目,數學知識的積累和解題方法的掌握,需要科學有效的復習方法,同時需要持之以恒的堅持。下面是小編給大家整理的一些高一

1216365