學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高三學(xué)習(xí)方法>高三數(shù)學(xué)>

人教版高三數(shù)學(xué)必修四知識(shí)點(diǎn)

時(shí)間: 巧綿0 分享

高三會(huì)教給我們奮斗,每個(gè)人都有無盡的潛力,每一個(gè)人都有無窮的提升空間,不經(jīng)過一年血戰(zhàn),也許我們永遠(yuǎn)發(fā)現(xiàn)不了自己身上蘊(yùn)藏的能量。所以高三注定是精彩的一頁,下面小編就為大家分享了《人教版高三數(shù)學(xué)必修四知識(shí)點(diǎn)》,感謝您的閱讀和關(guān)注!

【篇一】

a(1)=a,a(n)為公差為r的等差數(shù)列

通項(xiàng)公式:

a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.

可用歸納法證明。

n=1時(shí),a(1)=a+(1-1)r=a。成立。

假設(shè)n=k時(shí),等差數(shù)列的通項(xiàng)公式成立。a(k)=a+(k-1)r

則,n=k+1時(shí),a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.

通項(xiàng)公式也成立。

因此,由歸納法知,等差數(shù)列的通項(xiàng)公式是正確的。

求和公式:

S(n)=a(1)+a(2)+...+a(n)

=a+(a+r)+...+[a+(n-1)r]

=na+r[1+2+...+(n-1)]

=na+n(n-1)r/2

同樣,可用歸納法證明求和公式。

a(1)=a,a(n)為公比為r(r不等于0)的等比數(shù)列

通項(xiàng)公式:

a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1).

可用歸納法證明等比數(shù)列的通項(xiàng)公式。

求和公式:

S(n)=a(1)+a(2)+...+a(n)

=a+ar+...+ar^(n-1)

=a[1+r+...+r^(n-1)]

r不等于1時(shí),

S(n)=a[1-r^n]/[1-r]

r=1時(shí),

S(n)=na.

同樣,可用歸納法證明求和公式。

【篇二】

符合一定條件的動(dòng)點(diǎn)所形成的圖形,或者說,符合一定條件的點(diǎn)的全體所組成的集合,叫做滿足該條件的點(diǎn)的軌跡.

軌跡,包含兩個(gè)方面的問題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性).

【軌跡方程】就是與幾何軌跡對(duì)應(yīng)的代數(shù)描述。

一、求動(dòng)點(diǎn)的軌跡方程的基本步驟

⒈建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);

⒉寫出點(diǎn)M的集合;

⒊列出方程=0;

⒋化簡方程為最簡形式;

⒌檢驗(yàn)。

二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。

⒈直譯法:直接將條件翻譯成等式,整理化簡后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

⒉定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

⒊相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。

⒋參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

⒌交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。

直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟

①建系——建立適當(dāng)?shù)淖鴺?biāo)系;

②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);

③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;

④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;

⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。

人教版高三數(shù)學(xué)必修四知識(shí)點(diǎn)相關(guān)文章

1.高三數(shù)學(xué)必修四知識(shí)點(diǎn)整理

2.高中數(shù)學(xué)必修四第一章知識(shí)點(diǎn)總結(jié)

3.高中數(shù)學(xué)必修4目錄

4.人教版高中數(shù)學(xué)必修必修4公式

5.高三數(shù)學(xué)必修一數(shù)學(xué)七大知識(shí)點(diǎn)

6.高三年級(jí)數(shù)學(xué)必背知識(shí)點(diǎn)

7.人教版高中政治必修四知識(shí)點(diǎn)

8.人教版高中數(shù)學(xué)知識(shí)點(diǎn)

9.高一數(shù)學(xué)必修4向量知識(shí)點(diǎn)復(fù)習(xí)

10.高三數(shù)學(xué)知識(shí)點(diǎn)大全

人教版高三數(shù)學(xué)必修四知識(shí)點(diǎn)

高三會(huì)教給我們奮斗,每個(gè)人都有無盡的潛力,每一個(gè)人都有無窮的提升空間,不經(jīng)過一年血戰(zhàn),也許我們永遠(yuǎn)發(fā)現(xiàn)不了自己身上蘊(yùn)藏的能量。所以高三注定是精彩的一頁,下面小編就為大?
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

精選文章

  • 高中數(shù)學(xué)老師工作總結(jié)大全
    高中數(shù)學(xué)老師工作總結(jié)大全

    時(shí)間乘著年輪循序往前,高中數(shù)學(xué)的教學(xué)工作已經(jīng)結(jié)束了,回顧這段時(shí)間中有什么值得分享的成績呢?該好好寫一份工作總結(jié),分析一下過去這段時(shí)間的工作

  • 高三數(shù)學(xué)函數(shù)知識(shí)學(xué)習(xí)方法總結(jié)
    高三數(shù)學(xué)函數(shù)知識(shí)學(xué)習(xí)方法總結(jié)

    函數(shù)的性質(zhì)是研究初等函數(shù)的基石,也是高三考查的重點(diǎn)內(nèi)容,那你知道高三函數(shù)知識(shí)學(xué)習(xí)的方法有哪些嗎?下面是小編給大家整理的高三數(shù)學(xué)函數(shù)知識(shí)學(xué)

  • 趣味數(shù)學(xué)題及答案
    趣味數(shù)學(xué)題及答案

    數(shù)學(xué),人人皆學(xué)之,人人皆曉之,但總以抽象、枯燥、難懂而使人學(xué)而生畏,其實(shí)吧數(shù)學(xué)還是有很多趣味的。今天小編在這給大家整理了趣味數(shù)學(xué)題及答案,

  • 高考數(shù)學(xué)復(fù)習(xí)必須掌握的方法技巧
    高考數(shù)學(xué)復(fù)習(xí)必須掌握的方法技巧

    高考在即,高三的學(xué)生們現(xiàn)在都在緊張地復(fù)習(xí)著,那么關(guān)于高考數(shù)學(xué)復(fù)習(xí)方法技巧主要有哪些呢?下面是小編給大家整理的高考數(shù)學(xué)復(fù)習(xí)必須掌握的方法技

447790