學習啦 > 學習方法 > 高中學習方法 > 高三學習方法 > 高三數(shù)學 >

高三數(shù)學課前預習的相關知識點分析

時間: 贊銳20 分享

學習中,在課前要認真預習,努力找出重點和難點,對課本中的練習要嘗試進行解題,遇到自己不了解之處,要重點思考,以確定上課時聽講所要注重的主要問題。以下是小編給大家整理的高三數(shù)學課前預習的相關知識點分析,希望大家能夠喜歡!

高三數(shù)學課前預習的相關知識點分析1

向量的向量積

定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按這個次序構成右手系。若a、b共線,則a×b=0。

向量的向量積性質(zhì):

∣a×b∣是以a和b為邊的平行四邊形面積。

a×a=0。

a‖b〈=〉a×b=0。

向量的向量積運算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c.

注:向量沒有除法,“向量AB/向量CD”是沒有意義的。

高三數(shù)學課前預習的相關知識點分析2

①正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).

②正棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個直角三角形.

⑶特殊棱錐的頂點在底面的射影位置:

①棱錐的側(cè)棱長均相等,則頂點在底面上的射影為底面多邊形的外心.

②棱錐的側(cè)棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心.

③棱錐的各側(cè)面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內(nèi)心.

④棱錐的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內(nèi)心.

⑤三棱錐有兩組對棱垂直,則頂點在底面的射影為三角形垂心.

⑥三棱錐的三條側(cè)棱兩兩垂直,則頂點在底面上的射影為三角形的垂心.

⑦每個四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等于球半徑;

⑧每個四面體都有內(nèi)切球,球心

是四面體各個二面角的平分面的交點,到各面的距離等于半徑.

[注]:i.各個側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個側(cè)面的等腰三角形不知是否全等)

ii.若一個三角錐,兩條對角線互相垂直,則第三對角線必然垂直.

簡證:AB⊥CD,AC⊥BD

BC⊥AD.令得,已知則.

iii.空間四邊形OABC且四邊長相等,則順次連結各邊的中點的四邊形一定是矩形.

iv.若是四邊長與對角線分別相等,則順次連結各邊的中點的四邊是一定是正方形.

簡證:取AC中點,則平面90°易知EFGH為平行四邊形

EFGH為長方形.若對角線等,則為正方形.

高三數(shù)學課前預習的相關知識點分析3

正弦、余弦典型例題

1.在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

2.已知α為銳角,且,則α的度數(shù)是()A.30°B.45°C.60°D.90°

3.在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A.75°B.90°C.105°D.120°

4.若∠A為銳角,且,則A=()A.15°B.30°C.45°D.60°

5.在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點,EF⊥BC,垂足為F,求sin∠EBF的值。

正弦、余弦解題訣竅

1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理

2、已知三邊,或兩邊及其夾角用余弦定理

3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負,還是為零,就可以確定是鈍角。直角還是銳角。

高三數(shù)學課前預習的相關知識點分析相關文章:

高三數(shù)學知識點總結及數(shù)學學習方法

數(shù)學課前預習需要掌握四大要點

高中數(shù)學復習的五大要點分析

數(shù)學課前預習要怎么進行

數(shù)學課前預習的六大技巧

數(shù)學課前預習六大技巧分享

高中數(shù)學知識點全總結

課前預習的方法與重要性

數(shù)學課前預習論文

如何進行數(shù)學課前預習

1071052