高二數(shù)學(xué)立體幾何大題的八大解題技巧
高二數(shù)學(xué)立體幾何大題的八大解題技巧
經(jīng)常在做題后進行一定的“反思”,思考一下本題所用的基礎(chǔ)知識,數(shù)學(xué)思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過。小編在這整理了相關(guān)資料,希望能幫助到您。
立體幾何大題的八大解題技巧
平行、垂直位置關(guān)系的論證的策略
(1)由已知想性質(zhì),由求證想判定,即分析法與綜合法相結(jié)合尋找證題思路。
(2)利用題設(shè)條件的性質(zhì)適當(dāng)添加輔助線(或面)是解題的常用方法之一。
(3)三垂線定理及其逆定理在高考題中使用的頻率最高,在證明線線垂直時應(yīng)優(yōu)先考慮。
2空間角的計算方法與技巧
主要步驟:一作、二證、三算;若用向量,那就是一證、二算。
(1)兩條異面直線所成的角①平移法:②補形法:③向量法:
(2)直線和平面所成的角
①作出直線和平面所成的角,關(guān)鍵是作垂線,找射影轉(zhuǎn)化到同一三角形中計算,或用向量計算。
?、谟霉接嬎?。
(3)二面角
①平面角的作法:(i)定義法;(ii)三垂線定理及其逆定理法;(iii)垂面法。
?、谄矫娼堑挠嬎惴ǎ?/p>
(i)找到平面角,然后在三角形中計算(解三角形)或用向量計算;(ii)射影面積法;(iii)向量夾角公式。
3空間距離的計算方法與技巧
(1)求點到直線的距離:經(jīng)常應(yīng)用三垂線定理作出點到直線的垂線,然后在相關(guān)的三角形中求解,也可以借助于面積相等求出點到直線的距離。
(2)求兩條異面直線間距離:一般先找出其公垂線,然后求其公垂線段的長。在不能直接作出公垂線的情況下,可轉(zhuǎn)化為線面距離求解(這種情況高考不做要求)。
(3)求點到平面的距離:一般找出(或作出)過此點與已知平面垂直的平面,利用面面垂直的性質(zhì)過該點作出平面的垂線,進而計算;也可以利用“三棱錐體 積法”直接求距離;有時直接利用已知點求距離比較困難時,我們可以把點到平面的距離轉(zhuǎn)化為直線到平面的距離,從而“轉(zhuǎn)移”到另一點上去求“點到平面的距 離”。求直線與平面的距離及平面與平面的距離一般均轉(zhuǎn)化為點到平面的距離來求解。
4熟記一些常用的小結(jié)論
諸如:正四面體的體積公式是;面積射影公式;“立平斜關(guān)系式”;最小角定理。弄清楚棱錐的頂點在底面的射影為底面的內(nèi)心、外心、垂心的條件,這可能是快速解答某些問題的前提。
5平面圖形的翻折、立體圖形的展開等一類問題
要注意翻折前、展開前后有關(guān)幾何元素的“不變性”與“不變量”。
6與球有關(guān)的題型
只能應(yīng)用“老方法”,求出球的半徑即可。
7立體幾何讀題
(1)弄清楚圖形是什么幾何體,規(guī)則的、不規(guī)則的、組合體等。
(2)弄清楚幾何體結(jié)構(gòu)特征。面面、線面、線線之間有哪些關(guān)系(平行、垂直、相等)。
(3)重點留意有哪些面面垂直、線面垂直,線線平行、線面平行等。
8解題程序劃分為四個過程
?、倥鍐栴}。也就是明白“求證題”的已知是什么?條件是什么?未知是什么?結(jié)論是什么?也就是我們常說的審題。
?、跀M定計劃。找出已知與未知的直接或者間接的聯(lián)系。在弄清題意的基礎(chǔ)上,從中捕捉有用的信息,并及時提取記憶網(wǎng)絡(luò)中的有關(guān)信息,再將兩組信息資源作出合乎邏輯的有效組合,從而構(gòu)思出一個成功的計劃。即是我們常說的思考。
?、蹐?zhí)行計劃。以簡明、準(zhǔn)確、有序的數(shù)學(xué)語言和數(shù)學(xué)符號將解題思路表述出來,同時驗證解答的合理性。即我們所說的解答。
?、芑仡?。對所得的結(jié)論進行驗證,對解題方法進行總結(jié)。
高二數(shù)學(xué)采取針對性措施提升成績
(1)記數(shù)學(xué)筆記,特別是對概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。
(2)建立數(shù)學(xué)糾錯本。把平時容易出現(xiàn)錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。
(3)熟記一些數(shù)學(xué)規(guī)律和數(shù)學(xué)小結(jié)論,使自己平時的運算技能達到了自動化或半自動化的熟練程度。
(4)經(jīng)常對知識結(jié)構(gòu)進行梳理,形成板塊結(jié)構(gòu),實行“整體集裝”,如表格化,使知識結(jié)構(gòu)一目了然;經(jīng)常對習(xí)題進行類化,由一例到一類,由一類到多類,由多類到統(tǒng)一;使幾類問題歸納于同一知識方法。
(5)閱讀數(shù)學(xué)課外書籍與報刊,參加數(shù)學(xué)學(xué)科課外活動與講座,多做數(shù)學(xué)課外題,加大自學(xué)力度,拓展自己的知識面。
(6)及時復(fù)習(xí),強化對基本概念知識體系的理解與記憶,進行適當(dāng)?shù)姆磸?fù)鞏固,消滅前學(xué)后忘。
(7)學(xué)會從多角度、多層次地進行總結(jié)歸類。如:①從數(shù)學(xué)思想分類②從解題方法歸類③從知識應(yīng)用上分類等,使所學(xué)的知識系統(tǒng)化、條理化、專題化、網(wǎng)絡(luò)化。
(8)經(jīng)常在做題后進行一定的“反思”,思考一下本題所用的基礎(chǔ)知識,數(shù)學(xué)思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過。
(9)無論是作業(yè)還是測驗,都應(yīng)把準(zhǔn)確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,這是學(xué)好數(shù)學(xué)的重要問題。
立體幾何大題的八大解題技巧相關(guān)文章: