學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高一學(xué)習(xí)方法>高一數(shù)學(xué)>

高一數(shù)學(xué)指數(shù)函數(shù)及奇偶性知識(shí)點(diǎn)歸納

時(shí)間: 鳳婷983 分享

  數(shù)學(xué)課程是高中階段重要的科學(xué)課程,重點(diǎn)關(guān)注一些考試??嫉闹R(shí)點(diǎn),下面是學(xué)習(xí)啦小編給大家?guī)淼母咭粩?shù)學(xué)指數(shù)函數(shù)及奇偶性知識(shí)點(diǎn)歸納,希望對(duì)你有幫助。

  高一數(shù)學(xué)指數(shù)函數(shù)及奇偶性知識(shí)點(diǎn)

  指數(shù)函數(shù)的一般形式為,從上面我們對(duì)于冪函數(shù)的討論就可以知道,要想使得x能夠取整個(gè)實(shí)數(shù)集合為定義域,則只有使得如圖所示為a的不同大小影響函數(shù)圖形的情況。

  可以看到:

  (1)指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對(duì)于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

  (2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。

  (3)函數(shù)圖形都是下凹的。

  (4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

  (5)可以看到一個(gè)顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個(gè)過渡位置。

  (6)函數(shù)總是在某一個(gè)方向上無限趨向于X軸,永不相交。

  (7)函數(shù)總是通過(0,1)這點(diǎn)。

  (8)顯然指數(shù)函數(shù)無界。

  高一數(shù)學(xué)函數(shù)奇偶性知識(shí)點(diǎn)

  1.定義

  一般地,對(duì)于函數(shù)f(x)

  (1)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。

  (2)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。

  (3)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)同時(shí)成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。

  (4)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。

  說明:①奇、偶性是函數(shù)的整體性質(zhì),對(duì)整個(gè)定義域而言

 ?、谄妗⑴己瘮?shù)的定義域一定關(guān)于原點(diǎn)對(duì)稱,如果一個(gè)函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱,則這個(gè)函數(shù)一定不是奇(或偶)函數(shù)。

  (分析:判斷函數(shù)的奇偶性,首先是檢驗(yàn)其定義域是否關(guān)于原點(diǎn)對(duì)稱,然后再嚴(yán)格按照奇、偶性的定義經(jīng)過化簡、整理、再與f(x)比較得出結(jié)論)

  ③判斷或證明函數(shù)是否具有奇偶性的根據(jù)是定義

  2.奇偶函數(shù)圖像的特征:

  定理奇函數(shù)的圖像關(guān)于原點(diǎn)成中心對(duì)稱圖表,偶函數(shù)的圖象關(guān)于y軸或軸對(duì)稱圖形。

  f(x)為奇函數(shù)《==》f(x)的圖像關(guān)于原點(diǎn)對(duì)稱

  點(diǎn)(x,y)→(-x,-y)

  奇函數(shù)在某一區(qū)間上單調(diào)遞增,則在它的對(duì)稱區(qū)間上也是單調(diào)遞增。

  偶函數(shù)在某一區(qū)間上單調(diào)遞增,則在它的對(duì)稱區(qū)間上單調(diào)遞減。

  3.奇偶函數(shù)運(yùn)算

  (1).兩個(gè)偶函數(shù)相加所得的和為偶函數(shù).

  (2).兩個(gè)奇函數(shù)相加所得的和為奇函數(shù).

  (3).一個(gè)偶函數(shù)與一個(gè)奇函數(shù)相加所得的和為非奇函數(shù)與非偶函數(shù).

  (4).兩個(gè)偶函數(shù)相乘所得的積為偶函數(shù).

  (5).兩個(gè)奇函數(shù)相乘所得的積為偶函數(shù).

  (6).一個(gè)偶函數(shù)與一個(gè)奇函數(shù)相乘所得的積為奇函數(shù).

高一數(shù)學(xué)指數(shù)函數(shù)及奇偶性知識(shí)點(diǎn)歸納相關(guān)文章:

1.高一數(shù)學(xué)指數(shù)函數(shù)教案

2.高一數(shù)學(xué)必修1對(duì)數(shù)函數(shù)知識(shí)點(diǎn)總結(jié)

3.高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

4.高一上數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

5.高一必修一數(shù)學(xué)函數(shù)知識(shí)點(diǎn)

6.高一上數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

7.高一數(shù)學(xué)必修一函數(shù)知識(shí)點(diǎn)總結(jié)

2499532