學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高一學(xué)習(xí)方法>高一數(shù)學(xué)>

高一數(shù)學(xué)必修1《函數(shù)的概念》說課稿

時(shí)間: 文娟843 分享

  "說課"是教學(xué)改革中涌現(xiàn)出來的新生事物,是進(jìn)行教學(xué)研究、教學(xué)交流和教學(xué)探討的一種新的教學(xué)研究形式,也是集體備課的進(jìn)一步發(fā)展,而說課稿則是為進(jìn)行說課準(zhǔn)備的文稿。下面是學(xué)習(xí)啦小編為大家整理的高一數(shù)學(xué)必修1《函數(shù)的概念》說課稿,歡迎參考!

  高一數(shù)學(xué)必修1《函數(shù)的概念》說課稿

  教材分析:函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,同時(shí)還用集合與對(duì)應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想.

  教學(xué)目的:(1)通過豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;

  (2)了解構(gòu)成函數(shù)的要素;

  (3)會(huì)求一些簡單函數(shù)的定義域和值域;

  (4)能夠正確使用“區(qū)間”的符號(hào)表示某些函數(shù)的定義域;

  教學(xué)重點(diǎn):理解函數(shù)的模型化思想,用合與對(duì)應(yīng)的語言來刻畫函數(shù);

  教學(xué)難點(diǎn):符號(hào)“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;

  教學(xué)過程:

  一、 引入課題

  1. 復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;

  2. 閱讀課本引例,體會(huì)函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:

  (1)炮彈的射高與時(shí)間的變化關(guān)系問題;

  (2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問題;

  (3)“八五”計(jì)劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系問題

  備用實(shí)例:

  我國2003年4月份非典疫情統(tǒng)計(jì):

  日 期 22 23 24 25 26 27 28 29 30

  新增確診病例數(shù) 106 105 89 103 113 126 98 152 101

  3. 引導(dǎo)學(xué)生應(yīng)用集合與對(duì)應(yīng)的語言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴關(guān)系;

  4. 根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數(shù)關(guān)系.

  二、 新課教學(xué)

  (一)函數(shù)的有關(guān)概念

  1.函數(shù)的概念:

  設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù)(function).

  記作: y=f(x),x∈A.

  其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域(range).

  注意:

  ○1 “y=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;

  ○2 函數(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x.

  2. 構(gòu)成函數(shù)的三要素:

  定義域、對(duì)應(yīng)關(guān)系和值域

  3.區(qū)間的概念

  (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;

  (2)無窮區(qū)間;

  (3)區(qū)間的數(shù)軸表示.

  4.一次函數(shù)、二次函數(shù)、反比例函數(shù)的定義域和值域討論

  (由學(xué)生完成,師生共同分析講評(píng))

  (二)典型例題

  1.求函數(shù)定義域

  課本P20例1

  解:(略)

  說明:

  ○1 函數(shù)的定義域通常由問題的實(shí)際背景確定,如果課前三個(gè)實(shí)例;

  ○2 如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;

  ○3 函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

  鞏固練習(xí):課本P22第1題

  2.判斷兩個(gè)函數(shù)是否為同一函數(shù)

  課本P21例2

  解:(略)

  說明:

  ○1 構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))

  ○2 兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。

  鞏固練習(xí):

  1 課本P22第2題

  2 判斷下列函數(shù)f(x)與g(x)是否表示同一個(gè)函數(shù),說明理由?

  (1)f ( x ) = (x -1) 0;g ( x ) = 1

  (2)f ( x ) = x; g ( x ) =

  (3)f ( x ) = x 2;f ( x ) = (x + 1) 2

  (4)f ( x ) = | x | ;g ( x ) =

  (三)課堂練習(xí)

  求下列函數(shù)的定義域

  (略)

  三、 歸納小結(jié),強(qiáng)化思想

  從具體實(shí)例引入了函數(shù)的的概念,用集合與對(duì)應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念,介紹了求函數(shù)定義域和判斷同一函數(shù)的典型題目,引入了區(qū)間的概念來表示集合。

  四、 作業(yè)布置

  課本P28 習(xí)題1.2(A組) 第1—7題 (B組)第1題
看過" 高一數(shù)學(xué)必修1《函數(shù)的概念》說課稿 "的還看了:

1.高一數(shù)學(xué)必修1重點(diǎn)知識(shí)

2.高一數(shù)學(xué)必修1目錄

3.高一數(shù)學(xué)必修1函數(shù)的知識(shí)點(diǎn)

高一數(shù)學(xué)必修1《函數(shù)的概念》說課稿

說課是教學(xué)改革中涌現(xiàn)出來的新生事物,是進(jìn)行教學(xué)研究、教學(xué)交流和教學(xué)探討的一種新的教學(xué)研究形式,也是集體備課的進(jìn)一步發(fā)展,而說課稿則是為進(jìn)行說課準(zhǔn)備的文稿。下面是學(xué)習(xí)啦小編為大家整理的高一數(shù)學(xué)必修1《函數(shù)的概念》說課稿,歡
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

精選文章

1331779