學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初一學(xué)習(xí)方法 > 七年級數(shù)學(xué) > 初一數(shù)學(xué)乘法公式教學(xué)反思

初一數(shù)學(xué)乘法公式教學(xué)反思

時間: 鄭曉823 分享

初一數(shù)學(xué)乘法公式教學(xué)反思

  只要一門科學(xué)分支能提出大量的問題,它就充滿著生命力,而問題缺乏則預(yù)示著獨立發(fā)展的終止或衰亡。初一數(shù)學(xué)乘法公式的教學(xué)反思有哪些呢?接下來是學(xué)習(xí)啦小編為大家?guī)淼年P(guān)于初一數(shù)學(xué)乘法公式教學(xué)反思,希望會給大家?guī)韼椭?/p>

  初一數(shù)學(xué)乘法公式教學(xué)反思(一)

  “蘇科版”數(shù)學(xué)教材在七年級下冊的的第九章《整式的乘法與因式分解》中安排了“乘法公式”這部分內(nèi)容。根據(jù)過往學(xué)生的認識過程來看,學(xué)生的定向思維就認為兩數(shù)的和的平方等于兩數(shù)的平方和,而且還是根深蒂固的,那么如何在教學(xué)中轉(zhuǎn)變或是加深學(xué)生對此公式的正確認識呢? 教材做了合理的安排,較好的方法是用“數(shù)形結(jié)合”,借助面積相等幫助代數(shù)恒等式的學(xué)習(xí)。

  從人類思維活動規(guī)律的角度來考察,主體思維活動可以分成邏輯思維、形象思維和靈感思維,它們都是學(xué)習(xí)和研究數(shù)學(xué)的思維方式。其中形象思維是人腦憑借事物的形象進行思維。所謂形象是指反映于人腦中的客體的映象。這種映象可以以物化的形式再現(xiàn)出來,并被人感知。

  腦科學(xué)研究表明,邏輯思維主要發(fā)揮左腦半球的功能,形象思維則是發(fā)揮右腦半球的功能,如果適時進行形象思維,充分發(fā)揮感觀的作用,就能使左右腦并用,提高大腦的整體功能,使抽象的研究對象具體化,具有空間觀,從而便于認識隱蔽在事物深層的本質(zhì)和規(guī)律。這正是學(xué)習(xí)、研究數(shù)學(xué),提高數(shù)學(xué)能力的有效途徑和方法。

  另外,從初中學(xué)生的思維特點來看,他們的思維是從具體形象思維為主要形式逐步向抽象邏輯思維過渡,但這時的邏輯思維是思維是初步的,且在很大程度上仍具有具體形象性。因此,適時利用形象思維,既符合初中生的思維特點,也是進一步培養(yǎng)他們數(shù)學(xué)能力的有效途徑。

  在“蘇科版”《數(shù)學(xué)》教材中,每個章節(jié)的內(nèi)容較多的采用“學(xué)生做-在做中感受和體驗-主動獲取數(shù)學(xué)知識”的方式呈現(xiàn),在學(xué)生通過“做”獲得感受的基礎(chǔ)上,揭示具體實例的本質(zhì),然后再明晰有關(guān)知識。我認為這里的在“做中感受和體驗”就是引導(dǎo)學(xué)生進行形象思維的過程。

  在推導(dǎo)整式的乘法公式時,我課堂教學(xué)中改變了過去應(yīng)用多項式乘以多項式的法則直接得到結(jié)論的做法,是通過計算圖形的面積的方法得到。從代數(shù)式的幾何意義出發(fā),激發(fā)學(xué)生的圖形觀,利用拼圖的方法,使學(xué)生在動手的試驗中發(fā)現(xiàn)、歸納公式,教學(xué)的效果較好。

  初一數(shù)學(xué)乘法公式教學(xué)反思(二)

  這部分內(nèi)容是在學(xué)習(xí)了有理數(shù)的四則混合運算、冪的運算性質(zhì)、合并同類項、去括號、整式的加減等內(nèi)容的基礎(chǔ)上進行的,它是前面知識的延伸.這一部分具有承前啟后的作用,啟后是它是學(xué)習(xí)整式的除法、分式的運算、函數(shù)、二次方程的解法學(xué)習(xí)的基礎(chǔ)。整式的乘法這一部分內(nèi)容主要分成三部分內(nèi)容。

  第一部分是單項式乘單項式,這一部分內(nèi)容主要是要注意運算的法則依據(jù)是乘法的交換律,分成三步計算:一是各個單項式的系數(shù)相乘,二是同底數(shù)冪相乘,三是單獨的字母照抄。這部分的計算中往往會混合了積的乘方,要注意運算的順序,積的乘方應(yīng)注意復(fù)習(xí)鞏固。

  第二部分是單項式乘多項式,這一部分內(nèi)容的依據(jù)是乘法分配律,要注意有乘方運算時的運算順序以及符號的確定。

  第三部分內(nèi)容是多項式乘多項式,注意帶符號運算以及不要漏乘。在混合運算中注意括號運算,不要漏括號。

  在整個這一部分的內(nèi)容教學(xué)中,難點與易錯點主要是:

  1、符號不能正確的判斷,其中主要是沒有注意帶符號運算或者沒有注意整體思想,漏掉括號或者去括號錯誤。

  2、同時注意整體思想的滲透,作為整體的相反數(shù)的的變形,根據(jù)指數(shù)的奇偶性來判斷符號。

  3、注意實際問題主要是圖形的面積問題的正確解決。

  注重難點與學(xué)習(xí)方法。

  1、關(guān)注對教學(xué)難點的教學(xué)。

  新課程標(biāo)準下,數(shù)學(xué)教育的根本任務(wù)是發(fā)展學(xué)生的思維,教材中的難點往往是數(shù)學(xué)思維迅速豐富、過程大步跳躍的地方,所以在本節(jié)課難點教學(xué)中既注意了化難為易的效果,又注意了化難為易的過程,在探究法則的過程中設(shè)置循序漸進的問題,不斷啟迪學(xué)生思考,發(fā)展學(xué)生的思維能力,在應(yīng)用法則的過程中,又引導(dǎo)學(xué)生進行解題后的反思,這些將促使學(xué)生知識水平和能力水平同時提高。

  2、關(guān)注對學(xué)生學(xué)習(xí)方法的指導(dǎo)。

  建構(gòu)主義學(xué)習(xí)理論認為,學(xué)生的學(xué)習(xí)是對知識主動建構(gòu)的過程,同時學(xué)生要主動構(gòu)建對外部信息的解釋交流,所以在教學(xué)中注重營造學(xué)生自主參與、師生互動合作、探究創(chuàng)新為主線的教學(xué)模式,從學(xué)生已有的知識結(jié)構(gòu)入手,逐漸發(fā)現(xiàn)和提出新問題,在解決問題的過程中學(xué)會思考,在探究中掌握知識。

  3、教育的根本目的在于促進每一個學(xué)生的發(fā)展,這也是數(shù)學(xué)教育的根本目的,因此教師在教學(xué)設(shè)計時,結(jié)合學(xué)生實際,有效整合教材,精選例習(xí)題,分層施教。本單元教學(xué)是以習(xí)題訓(xùn)練為主的,教學(xué)時注意選擇了有層次的例題和練習(xí),采用“兵教兵”的方法,組織學(xué)生開展合作學(xué)習(xí)。在探究問題的設(shè)計上也是由淺入深,目的就在于通過引導(dǎo)學(xué)生對問題的解決,能熟練掌握基礎(chǔ)知識,靈活運用基本方法,提高分析問題和解決問題的能力。

  4、讓學(xué)生在“做”中學(xué)。

  依據(jù)教學(xué)內(nèi)容及教學(xué)要求,本節(jié)課通過拼圖游戲,讓學(xué)生動手操作,在活動中既復(fù)習(xí)了單項式與多項式相乘,又引出多項式相乘的運算。由于所拼圖形的面積會有不同的表示方式,通過對比這些表示方式可以使學(xué)生用幾何方法對多項式乘法法則有一個直觀認識,再由幾何解釋的基礎(chǔ)上從代數(shù)運算的角度將多項式與多項式相乘轉(zhuǎn)化為單項式與多項式相乘,整個過程中學(xué)生在教師指導(dǎo)下經(jīng)歷操作、探究、解決問題的過程,引導(dǎo)學(xué)生在問題探究中不斷質(zhì)疑和釋疑,體現(xiàn)了以探究為出發(fā),以活動為中心,注重讓學(xué)生從做中學(xué)的教學(xué)思路。

  5、加強反思,注重對學(xué)生數(shù)學(xué)思想方法的滲透。

  美國認知心理學(xué)家加涅指出,學(xué)習(xí)者學(xué)會了如何學(xué)習(xí)、如何記憶、如何獲得更多的學(xué)習(xí)思維和分析思維,將會使它們變得越來越自主學(xué)習(xí)。所以,在教學(xué)中非常注重引導(dǎo)學(xué)生進行反思,在探究問題的過程中引導(dǎo)學(xué)生思考運用了哪些數(shù)學(xué)思想,例如本課中將多項式乘法轉(zhuǎn)化為單項式乘以多項式的“轉(zhuǎn)化”的思想,運用乘法分配律時的“整體”思想,拼圖列式中運用的“數(shù)形結(jié)合”思想等,可以幫助學(xué)生從本質(zhì)上理解所學(xué)知識,并提高解決問題的能力,真正使教學(xué)過程起到“授之以漁”的作用。


看了初一數(shù)學(xué)乘法公式教學(xué)反思看過:

1.初一數(shù)學(xué)教學(xué)反思

2.《有理數(shù)的乘法》數(shù)學(xué)課堂反思

3.有理數(shù)的乘法教學(xué)反思

4.數(shù)學(xué)積的乘方教學(xué) 積的乘方教學(xué)反思

2381391