初一學(xué)生學(xué)習(xí)數(shù)學(xué)的方法有哪些
初一學(xué)生學(xué)習(xí)數(shù)學(xué)的方法有哪些
初中數(shù)學(xué)是一個(gè)整體,初二的難點(diǎn)最多,初三的考點(diǎn)最多。相對(duì)而言,初一數(shù)學(xué)知識(shí)點(diǎn)雖然很多,但都比較簡(jiǎn)單,所以在初一打好基礎(chǔ)非常重要。下面是小編分享的初一數(shù)學(xué)的學(xué)習(xí)方法指導(dǎo),一起來(lái)看看吧。
初一數(shù)學(xué)的學(xué)習(xí)方法指導(dǎo)
一、“學(xué)法”指導(dǎo):
學(xué)生在解題(特別是幾何證明題)書寫上往往存在著條理不清,邏輯混亂等問(wèn)題,其原因之一是,我們?cè)诮虒W(xué)中不大重視對(duì)學(xué)生進(jìn)行寫法指導(dǎo)。指導(dǎo)寫法,應(yīng)做到:
1、要教會(huì)學(xué)生將文字語(yǔ)言轉(zhuǎn)化為數(shù)學(xué)符號(hào)語(yǔ)言,數(shù)學(xué)符號(hào)中數(shù)學(xué)演算的前提;
2、要將學(xué)生在推理的同時(shí)學(xué)會(huì)書寫表達(dá),讓學(xué)生在反復(fù)訓(xùn)練中熟練掌握常用的書寫格式;
3、要訓(xùn)練學(xué)生根據(jù)已知條件來(lái)分析作圖,正確地將文字語(yǔ)言轉(zhuǎn)化為直觀圖形,以便于利用數(shù)形結(jié)合解決問(wèn)題。這樣一來(lái)多形式、多層次去強(qiáng)化訓(xùn)練,讓學(xué)生過(guò)好分析關(guān)、書寫關(guān),使學(xué)生在注意嚴(yán)謹(jǐn)性、邏輯性的過(guò)程中形成正確的學(xué)習(xí)習(xí)慣。
二、“記法”指導(dǎo):
初中學(xué)生由于正處在初級(jí)的邏輯思維階段,知記知識(shí)時(shí)機(jī)械記憶的成分較多,理解記憶的成分較少,這就不能適應(yīng)初中學(xué)生的新要求。因此,重視對(duì)學(xué)生進(jìn)行記法指導(dǎo),使其能夠容易記憶,這是初中數(shù)學(xué)教學(xué)的必然要求。
教學(xué)中,首先要重視改革教學(xué)方法,摒棄“滿堂灌”,以避免學(xué)生“消化不良”,其次要善于結(jié)合數(shù)學(xué)實(shí)際,教給學(xué)生相應(yīng)的方法,如通過(guò)對(duì)知識(shí)之間的類比,使學(xué)生學(xué)會(huì)聯(lián)想記憶,通過(guò)在知識(shí)編成順口溜,使學(xué)生學(xué)會(huì)用口訣記憶,通過(guò)繪制直觀圖,使學(xué)生在以形助學(xué)中學(xué)會(huì)數(shù)形結(jié)合記憶;通過(guò)發(fā)掘知識(shí)的本質(zhì)屬性,使學(xué)生在形成概念的同時(shí),學(xué)會(huì)理解記憶;通過(guò)歸納概括所學(xué)知識(shí),使學(xué)生學(xué)會(huì)接受知識(shí)結(jié)構(gòu)系統(tǒng)記憶;通過(guò)揭示獲取知識(shí)的思維過(guò)程,使學(xué)生學(xué)會(huì)循序漸近。此外,我們還應(yīng)該讓學(xué)生明確各科記憶方法。
學(xué)法指導(dǎo)必須與教學(xué)改革同走進(jìn)行,協(xié)調(diào)開(kāi)展,持之以恒。我們?cè)跀?shù)學(xué)教學(xué)的同時(shí)應(yīng)關(guān)于理論聯(lián)系實(shí)際,因人而異,因材施教,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。
打好初一數(shù)學(xué)基礎(chǔ)的建議
(1)細(xì)心地發(fā)掘概念和公式
很多同學(xué)對(duì)概念和公式不夠重視,這類問(wèn)題反映在三個(gè)方面:一是,對(duì)概念的理解只是停留在文字表面,對(duì)概念的特殊情況重視不夠。例如,在代數(shù)式的概念(用字母或數(shù)字表示的式子是代數(shù)式)中,很多同學(xué)忽略了“單個(gè)字母或數(shù)字也是代數(shù)式”。二是,對(duì)概念和公式一味的死記硬背,缺乏與實(shí)際題目的聯(lián)系。這樣就不能很好的將學(xué)到的知識(shí)點(diǎn)與解題聯(lián)系起來(lái)。三是,一部分同學(xué)不重視對(duì)數(shù)學(xué)公式的記憶。記憶是理解的基礎(chǔ)。如果你不能將公式爛熟于心,又怎能夠在題目中熟練應(yīng)用呢?
我們的建議是:更細(xì)心一點(diǎn)(觀察特例),更深入一點(diǎn)(了解它在題目中的常見(jiàn)考點(diǎn)),更熟練一點(diǎn)(無(wú)論它以什么面目出現(xiàn),我們都能夠應(yīng)用自如)。
(2)總結(jié)相似的類型題目
這個(gè)工作,不僅僅是老師的事,我們的同學(xué)要學(xué)會(huì)自己做。當(dāng)你會(huì)總結(jié)題目,對(duì)所做的題目會(huì)分類,知道自己能夠解決哪些題型,掌握了哪些常見(jiàn)的解題方法,還有哪些類型題不會(huì)做時(shí),你才真正的掌握了這門學(xué)科的竅門,才能真正的做到“任它千變?nèi)f化,我自巋然不動(dòng)”。這個(gè)問(wèn)題如果解決不好,在進(jìn)入初二、初三以后,同學(xué)們會(huì)發(fā)現(xiàn),有一部分同學(xué)天天做題,可成績(jī)不升反降。其原因就是,他們天天都在做重復(fù)的工作,很多相似的題目反復(fù)做,需要解決的問(wèn)題卻不能專心攻克。久而久之,不會(huì)的題目還是不會(huì),會(huì)做的題目也因?yàn)槿狈?duì)數(shù)學(xué)的整體把握,弄的一團(tuán)糟。
我們的建議是:“總結(jié)歸納”是將題目越做越少的最好辦法。
(3)收集自己的典型錯(cuò)誤和不會(huì)的題目
同學(xué)們最難面對(duì)的,就是自己的錯(cuò)誤和困難。但這恰恰又是最需要解決的問(wèn)題。同學(xué)們做題目,有兩個(gè)重要的目的:一是,將所學(xué)的知識(shí)點(diǎn)和技巧,在實(shí)際的題目中演練。另外一個(gè)就是,找出自己的不足,然后彌補(bǔ)它。這個(gè)不足,也包括兩個(gè)方面,容易犯的錯(cuò)誤和完全不會(huì)的內(nèi)容。但現(xiàn)實(shí)情況是,同學(xué)們只追求做題的數(shù)量,草草的應(yīng)付作業(yè)了事,而不追求解決出現(xiàn)的問(wèn)題,更談不上收集錯(cuò)誤。我們之所以建議大家收集自己的典型錯(cuò)誤和不會(huì)的題目,是因?yàn)?,一旦你做了這件事,你就會(huì)發(fā)現(xiàn),過(guò)去你認(rèn)為自己有很多的小毛病,現(xiàn)在發(fā)現(xiàn)原來(lái)就是這一個(gè)反復(fù)在出現(xiàn);過(guò)去你認(rèn)為自己有很多問(wèn)題都不懂,現(xiàn)在發(fā)現(xiàn)原來(lái)就這幾個(gè)關(guān)鍵點(diǎn)沒(méi)有解決。
我們的建議是:做題就像挖金礦,每一道錯(cuò)題都是一塊金礦,只有發(fā)掘、冶煉,才會(huì)有收獲。
(4)就不懂的問(wèn)題,積極提問(wèn)、討論
發(fā)現(xiàn)了不懂的問(wèn)題,積極向他人請(qǐng)教。這是很平常的道理。但就是這一點(diǎn),很多同學(xué)都做不到。原因可能有兩個(gè)方面:一是,對(duì)該問(wèn)題的重視不夠,不求甚解;二是,不好意思,怕問(wèn)老師被訓(xùn),問(wèn)同學(xué)被同學(xué)瞧不起。抱著這樣的心態(tài),學(xué)習(xí)任何東西都不可能學(xué)好。“閉門造車”只會(huì)讓你的問(wèn)題越來(lái)越多。知識(shí)本身是有連貫性的,前面的知識(shí)不清楚,學(xué)到后面時(shí),會(huì)更難理解。這些問(wèn)題積累到一定程度,就會(huì)造成你對(duì)該學(xué)科慢慢失去興趣。直到無(wú)法趕上步伐。
討論是一種非常好的學(xué)習(xí)方法。一個(gè)比較難的題目,經(jīng)過(guò)與同學(xué)討論,你可能就會(huì)獲得很好的靈感,從對(duì)方那里學(xué)到好的方法和技巧。需要注意的是,討論的對(duì)象最好是與自己水平相當(dāng)?shù)耐瑢W(xué),這樣有利于大家相互學(xué)習(xí)。
我們的建議是:“勤學(xué)”是基礎(chǔ),“好問(wèn)”是關(guān)鍵。
(5)注重實(shí)戰(zhàn)(考試)經(jīng)驗(yàn)的培養(yǎng)
考試本身就是一門學(xué)問(wèn)。有些同學(xué)平時(shí)成績(jī)很好,上課老師一提問(wèn),什么都會(huì)。課下做題也都會(huì)??梢坏娇荚?,成績(jī)就不理想。出現(xiàn)這種情況,有兩個(gè)主要原因:一是,考試心態(tài)不不好,容易緊張;二是,考試時(shí)間緊,總是不能在規(guī)定的時(shí)間內(nèi)完成。心態(tài)不好,一方面要自己注意調(diào)整,但同時(shí)也需要經(jīng)歷大型考試來(lái)鍛煉。每次考試,大家都要尋找一種適合自己的調(diào)整方法,久而久之,逐步適應(yīng)考試節(jié)奏。做題速度慢的問(wèn)題,需要同學(xué)們?cè)谄綍r(shí)的做題中解決。自己平時(shí)做作業(yè)可以給自己限定時(shí)間,逐步提高效率。另外,在實(shí)際考試中,也要考慮每部分的完成時(shí)間,避免出現(xiàn)不必要的慌亂。
我們的建議是:把“做作業(yè)”當(dāng)成考試,把“考試”當(dāng)成做作業(yè)。
以上,是我就初一數(shù)學(xué)經(jīng)常出現(xiàn)的問(wèn)題給出的一點(diǎn)建議,但要強(qiáng)調(diào)的是,任何方法最重要的是有效,同學(xué)們?cè)趯W(xué)習(xí)中千萬(wàn)要避免形式化,一定要追求實(shí)效。
初中提高數(shù)學(xué)成績(jī)的四大技巧
一、該記的記,該背的背,不要以為理解了就行
有的同學(xué)認(rèn)為,數(shù)學(xué)不像英語(yǔ)、史地,要背單詞、背年代、背地名,數(shù)學(xué)靠的是智慧、技巧和推理。我說(shuō)你只講對(duì)了一半。數(shù)學(xué)同樣也離不開(kāi)記憶。試想一下,小學(xué)的加、減、乘、除運(yùn)算要不是背熟了“乘法九九表”,你能順利地進(jìn)行運(yùn)算嗎?盡管你理解了乘法是相同加數(shù)的和的運(yùn)算,但你在做9*9時(shí)用九個(gè)9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同樣,是運(yùn)用大家熟記的法則做出來(lái)的。同時(shí),數(shù)學(xué)中還有大量的規(guī)定需要記憶,比如規(guī)定(a≠0)等等。因此,我覺(jué)得數(shù)學(xué)更像游戲,它有許多游戲規(guī)則(即數(shù)學(xué)中的定義、法則、公式、定理等),誰(shuí)記住了這些游戲規(guī)則,誰(shuí)就能順利地做游戲;誰(shuí)違反了這些游戲規(guī)則,誰(shuí)就被判錯(cuò),罰下。因此,數(shù)學(xué)的定義、法則、公式、定理等一定要記熟,有些最好能背誦,朗朗上口。比如大家熟悉的“整式乘法三個(gè)公式”,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學(xué)敲一敲警鐘,如果背不出這三個(gè)公式,將會(huì)對(duì)今后的學(xué)習(xí)造成很大的麻煩,因?yàn)榻窈蟮膶W(xué)習(xí)將會(huì)大量地用到這三個(gè)公式,特別是初二即將學(xué)的因式分解,其中相當(dāng)重要的三個(gè)因式分解公式就是由這三個(gè)乘法公式推出來(lái)的,二者是相反方向的變形。
對(duì)數(shù)學(xué)的定義、法則、公式、定理等,理解了的要記住,暫時(shí)不理解的也要記住,在記憶的基礎(chǔ)上、在應(yīng)用它們解決問(wèn)題時(shí)再加深理解。打一個(gè)比方,數(shù)學(xué)的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒(méi)有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數(shù)學(xué)的定義、法則、公式、定理就很難解數(shù)學(xué)題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數(shù)學(xué)題,甚至是解數(shù)學(xué)難題中得心應(yīng)手。
二、幾個(gè)重要的數(shù)學(xué)思想
1、“方程”的思想
數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見(jiàn)的等量關(guān)系就是“方程”。比如等速運(yùn)動(dòng)中,路程、速度和時(shí)間三者之間就有一種等量關(guān)系,可以建立一個(gè)相關(guān)等式:速度*時(shí)間=路程,在這樣的等式中,一般會(huì)有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過(guò)方程里的已知量求出未知量的過(guò)程就是解方程。我們?cè)谛W(xué)就已經(jīng)接觸過(guò)簡(jiǎn)易方程,而初一則比較系統(tǒng)地學(xué)習(xí)解一元一次方程,并總結(jié)出解一元一次方程的五個(gè)步驟。如果學(xué)會(huì)并掌握了這五個(gè)步驟,任何一個(gè)一元一次方程都能順利地解出來(lái)。初二、初三我們還將學(xué)習(xí)解一元二次方程、二元二次方程組、簡(jiǎn)單的三角方程;到了高中我們還將學(xué)習(xí)指數(shù)方程、對(duì)數(shù)方程、線性方程組、、參數(shù)方程、極坐標(biāo)方程等。解這些方程的思維幾乎一致,都是通過(guò)一定的方法將它們轉(zhuǎn)化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個(gè)步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實(shí)中的大量實(shí)際應(yīng)用,都需要建立方程,通過(guò)解方程來(lái)求出結(jié)果。因此,同學(xué)們一定要將解一元一次方程和解一元二次方程學(xué)好,進(jìn)而學(xué)好其它形式的方程。
所謂的“方程”思想就是對(duì)于數(shù)學(xué)問(wèn)題,特別是現(xiàn)實(shí)當(dāng)中碰到的未知量和已知量的錯(cuò)綜復(fù)雜的關(guān)系,善于用“方程”的觀點(diǎn)去構(gòu)建有關(guān)的方程,進(jìn)而用解方程的方法去解決它。
2、“數(shù)形結(jié)合”的思想
大千世界,“數(shù)”與“形”無(wú)處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小這兩個(gè)屬性,就交給數(shù)學(xué)去研究了。初中數(shù)學(xué)的兩個(gè)分支棗-代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢(shì),越學(xué)下去,“數(shù)”與“形”越密不可分,到了高中,就出現(xiàn)了專門用代數(shù)方法去研究幾何問(wèn)題的一門課,叫做“解析幾何”。在初三,建立平面直角坐標(biāo)系后,研究函數(shù)的問(wèn)題就離不開(kāi)圖象了。往往借助圖象能使問(wèn)題明朗化,比較容易找到問(wèn)題的關(guān)鍵所在,從而解決問(wèn)題。在今后的數(shù)學(xué)學(xué)習(xí)中,要重視“數(shù)形結(jié)合”的思維訓(xùn)練,任何一道題,只要與“形”沾得上一點(diǎn)邊,就應(yīng)該根據(jù)題意畫出草圖來(lái)分析一番,這樣做,不但直觀,而且全面,整體性強(qiáng),容易找出切入點(diǎn),對(duì)解題大有益處。嘗到甜頭的人慢慢會(huì)養(yǎng)成一種“數(shù)形結(jié)合”的好習(xí)慣。
3、“對(duì)應(yīng)”的思想
“對(duì)應(yīng)”的思想由來(lái)已久,比如我們將一支鉛筆、一本書、一棟房子對(duì)應(yīng)一個(gè)抽象的數(shù)“1”,將兩只眼睛、一對(duì)耳環(huán)、雙胞胎對(duì)應(yīng)一個(gè)抽象的數(shù)“2”;隨著學(xué)習(xí)的深入,我們還將“對(duì)應(yīng)”擴(kuò)展到對(duì)應(yīng)一種形式,對(duì)應(yīng)一種關(guān)系,等等。比如我們?cè)谟?jì)算或化簡(jiǎn)中,將對(duì)應(yīng)公式的左邊,對(duì)應(yīng)a,y對(duì)應(yīng)b,再利用公式的右邊直接得出原式的結(jié)果即。這就是運(yùn)用“對(duì)應(yīng)”的思想和方法來(lái)解題。初二、初三我們還將看到數(shù)軸上的點(diǎn)與實(shí)數(shù)之間的一一對(duì)應(yīng),直角坐標(biāo)平面上的點(diǎn)與一對(duì)有序?qū)崝?shù)之間的一一對(duì)應(yīng),函數(shù)與其圖象之間的對(duì)應(yīng)。“對(duì)應(yīng)”的思想在今后的學(xué)習(xí)中將會(huì)發(fā)揮越來(lái)越大的作用
三、自學(xué)能力的培養(yǎng)是深化學(xué)習(xí)的必由之路
在學(xué)習(xí)新概念、新運(yùn)算時(shí),老師們總是通過(guò)已有知識(shí)自然而然過(guò)渡到新知識(shí),水到渠成,亦即所謂“溫故而知新”。因此說(shuō),數(shù)學(xué)是一門能自學(xué)的學(xué)科,自學(xué)成才最典型的例子就是數(shù)學(xué)家華羅庚。
我們?cè)谡n堂上聽(tīng)老師講解,不光是學(xué)習(xí)新知識(shí),更重要的是潛移默化老師的那種數(shù)學(xué)思維習(xí)慣,逐漸地培養(yǎng)起自己對(duì)數(shù)學(xué)的一種悟性。我去佛山一中開(kāi)家長(zhǎng)會(huì)時(shí),一中校長(zhǎng)的一番話使我感觸良多。他說(shuō):我是教物理的,學(xué)生物理學(xué)得好,不是我教出來(lái)的,而是他們自己悟出來(lái)的。當(dāng)然,校長(zhǎng)是謙虛的,但他說(shuō)明了一個(gè)道理,學(xué)生不能被動(dòng)地學(xué)習(xí),而應(yīng)主動(dòng)地學(xué)習(xí)。一個(gè)班里幾十個(gè)學(xué)生,同一個(gè)老師教,差異那么大,這就是學(xué)習(xí)主動(dòng)性問(wèn)題了。
自學(xué)能力越強(qiáng),悟性就越高。隨著年齡的增長(zhǎng),同學(xué)們的依賴性應(yīng)不斷減弱,而自學(xué)能力則應(yīng)不斷增強(qiáng)。因此,要養(yǎng)成預(yù)習(xí)的習(xí)慣。在老師講新課前,能不能運(yùn)用自己所學(xué)過(guò)的已掌握的舊知識(shí)去預(yù)習(xí)新課,結(jié)合新課中的新規(guī)定去分析、理解新的學(xué)習(xí)內(nèi)容。由于數(shù)學(xué)知識(shí)的無(wú)矛盾性,你所學(xué)過(guò)的數(shù)學(xué)知識(shí)永遠(yuǎn)都是有用的,都是正確的,數(shù)學(xué)的進(jìn)一步學(xué)習(xí)只是加深拓廣而已。因此,以前的數(shù)學(xué)學(xué)得扎實(shí),就為以后的進(jìn)取奠定了基礎(chǔ),就不難自學(xué)新課。同時(shí),在預(yù)習(xí)新課時(shí),碰到什么自己解決不了的問(wèn)題,帶著問(wèn)題去聽(tīng)老師講解新課,收獲之大是不言而喻的。有些同學(xué)為什么聽(tīng)老師講新課時(shí)總有一種似懂非懂的感覺(jué),或者是“一聽(tīng)就懂、一做就錯(cuò)”,就是因?yàn)闆](méi)有預(yù)習(xí),沒(méi)有帶著問(wèn)題學(xué),沒(méi)有將“要我學(xué)”真正變?yōu)?ldquo;我要學(xué)”,力求把知識(shí)變?yōu)樽约旱?。學(xué)來(lái)學(xué)去,知識(shí)還是別人的。檢驗(yàn)數(shù)學(xué)學(xué)得好不好的標(biāo)準(zhǔn)就是會(huì)不會(huì)解題。聽(tīng)懂并記憶有關(guān)的定義、法則、公式、定理,只是學(xué)好數(shù)學(xué)的必要條件,能獨(dú)立解題、解對(duì)題才是學(xué)好數(shù)學(xué)的標(biāo)志。
四、自信才能自強(qiáng)
在考試中,總是看見(jiàn)有些同學(xué)的試卷出現(xiàn)許多空白,即有好幾題根本沒(méi)有動(dòng)手去做。當(dāng)然,俗話說(shuō),藝高膽大,藝不高就膽不大。但是,做不出是一回事,沒(méi)有去做則是另一回事。稍為難一點(diǎn)的數(shù)學(xué)題都不是一眼就能看出它的解法和結(jié)果的。要去分析、探索、比比畫畫、寫寫算算,經(jīng)過(guò)迂回曲折的推理或演算,才顯露出條件和結(jié)論之間的某種聯(lián)系,整個(gè)思路才會(huì)明朗清晰起來(lái)。你都沒(méi)有動(dòng)手去做,又怎么知道自己不會(huì)做呢?即使是老師,拿到一道難題,也不能立即答復(fù)你。也同樣要先分析、研究,找到正確的思路后才向你講授。不敢去做稍為復(fù)雜一點(diǎn)的題(不一定是難題,有些題只不過(guò)是敘述多一點(diǎn)),是缺乏自信心的表現(xiàn)。在數(shù)學(xué)解題中,自信心是相當(dāng)重要的。要相信自己,只要不超出自己的知識(shí)范疇,不管哪道題,總是能夠用自己所學(xué)過(guò)的知識(shí)把它解出來(lái)。要敢于去做題,要善于去做題。這就叫做“在戰(zhàn)略上藐視敵人,在戰(zhàn)術(shù)上重視敵人”。
具體解題時(shí),一定要認(rèn)真審題,緊緊抓住題目的所有條件不放,不要忽略了任何一個(gè)條件。一道題和一類題之間有一定的共性,可以想想這一類題的一般思路和一般解法,但更重要的是抓住這一道題的特殊性,抓住這一道題與這一類題不同的地方。數(shù)學(xué)的題目幾乎沒(méi)有相同的,總有一個(gè)或幾個(gè)條件不盡相同,因此思路和解題過(guò)程也不盡相同。有些同學(xué)老師講過(guò)的題會(huì)做,其它的題就不會(huì)做,只會(huì)依樣畫瓢,題目有些小的變化就干瞪眼,無(wú)從下手。當(dāng)然,做題先從哪兒下手是一件棘手的事,不一定找得準(zhǔn)。但是,做題一定要抓住其特殊性則絕對(duì)沒(méi)錯(cuò)。選擇一個(gè)或幾個(gè)條件作為解題的突破口,看由這個(gè)條件能得出什么,得出的越多越好,然后從中選擇與其它條件有關(guān)的、或與結(jié)論有關(guān)的、或與題目中的隱含條件有關(guān)的,進(jìn)行推理或演算。一般難題都有多種解法,條條大路通北京。要相信利用這道題的條件,加上自己學(xué)過(guò)的那些知識(shí),一定能推出正確的結(jié)論。
數(shù)學(xué)題目是無(wú)限的,但數(shù)學(xué)的思想和方法卻是有限的。我們只要學(xué)好了有關(guān)的基礎(chǔ)知識(shí),掌握了必要的數(shù)學(xué)思想和方法,就能順利地對(duì)付那無(wú)限的題目。題目并不是做得越多越好,題海無(wú)邊,總也做不完。關(guān)鍵是你有沒(méi)有培養(yǎng)起良好的數(shù)學(xué)思維習(xí)慣,有沒(méi)有掌握正確的數(shù)學(xué)解題方法。當(dāng)然,題目做得多也有若干好處:一是“熟能生巧”,加快速度,節(jié)省時(shí)間,這一點(diǎn)在考試時(shí)間有限時(shí)顯得很重要;一是利用做題來(lái)鞏固、記憶所學(xué)的定義、定理、法則、公式,形成良性循環(huán)。
解題需要豐富的知識(shí),更需要自信心。沒(méi)有自信就會(huì)畏難,就會(huì)放棄;只有自信,才能勇往直前,才不會(huì)輕言放棄,才會(huì)加倍努力地學(xué)習(xí),才有希望攻克難關(guān),迎來(lái)屬于自己的春天。
猜你感興趣:
1.初一年級(jí)學(xué)好數(shù)學(xué)的流程是什么
3.初一數(shù)學(xué)學(xué)習(xí)方法與技巧